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I. EXPERIMENT

A. Additional data for the translationally symmetric geometry

The data presented in Fig. 2 C and D of the main text correspond to situation where the

meniscus has been allowed to relax to near-equilibrium configuration. However, when the

film is pulled out from the liquid surface or allowed to absorb on to it at small velocity, one

obtains two different values of ψ0 corresponding to advancing and receding configurations.

κ(s) curve in situations close to the advancing and receding angles for PS film of thickness

t = 2 µm is shown in Fig. S1 A and Fig. S1 B respectively. The cusp in κ(s) at the three

phase contact is clearly seen even in these situations with different values of ψ0.

B. Examining the data analysis protocol

1. Case I: Smooth curvature

In order to make sure that no spurious artifact is introduced by the data analysis algo-

rithm adopted, we take a parabolic function y = 0.7x2 (Fig. S2 A) which has a shape (in

length units of mm) similar near the origin to the typically measured sheet profile. The
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FIG. S1. κ(s) for polystyrene film of thickness t = 2 µm at (A) ψ0 = 52.4◦ close to the advancing

configuration and (B) at ψ0 = 43◦ close to the receding configuration. The cusp in curvature near

the vertex is clearly seen.
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FIG. S2. (A) Data sampled from the function y = 0.7x2. (B) Black circles: Curvature κ(s)

computed from the data in (A) using the algorithm used in the paper. Red solid curve: κ(s)

obtained from the function y = 0.7x2 analytically. The two match exactly.

function is sampled to generate (x, y) coordinates. The data set so generated is run through

the same algorithm used in the main text to obtain κ(s), plotted in Fig. S2B as filled black

circles. We have used ℓbc = 0.2 mm, a value close to that in the experiments. The exact

analytical result obtained for the particular function chosen is plotted as a red solid line.

The two match exactly with each other in this case - a parabola has a smooth κ(s) curve

which the data analysis algorithm captures correctly without introducing any spurious cusp

at the origin.

2. Case II: Curvature with a cusp

We consider the following two polynomials:

f1(x) = −0.023x4 − 0.25x3 + 0.72x2 + 0.0023x− 0.0055 (S1)

f2(x) = 0.088x4 + 0.38x3 + 0.72x2 + 0.0023x− 0.0055 (S2)

Using the above two polynomials we define the following piecewise function:

y(x) =

 f1(x) x < 0

f2(x) x > 0
(S3)

The coefficients of the polynomials have been chosen to keep the shape (in length units of

mm) of the function y(x) similar to a typical experimentally measured profile. The functions
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have been plotted in Fig. S3 A (we have assumed ℓbc = 0.2 mm). It may be noted that

the two polynomials have the same coefficients for the constant, linear and square terms

but different coefficients for the cubic and the quartic terms. This implies that at x = 0,

the function y(x) defined in Eq. (S3) has a continuous but non-smooth curvature. The

expected κ(s) curve is shown as solid lines in Fig. S3B. The function y(x) in Eq. (S3) is

used to generate data points (x, y) at a sampling rate comparable to the experiments. When

the data analysis algorithm is employed on the polynomial functions f1(x) and f2(x), the

curvature (open circles in Fig. S3 B) match exactly with the expected result.
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FIG. S3. (A) Two polynomial functions f1(x) and f2(x) are used to define a piecewise function

y(x) shown as solid line, see Eqs. (S1)-(S3). (B) k(s) curve obtained for the functions f1(x) and

f2(x) using the data analysis algorithm (open circles) match exactly with the expected result (solid

lines).

Curvature was obtained by using our data analysis algorithm on the data generated by

sampling the function y(x) is shown in Fig. S4A. The red, blue and green curves show

the curvature computed by taking ∆ = ℓbc, 0.5ℓbc and 0.2ℓbc respectively while the black

curve shows the analytically calculated result. We next study the effect of noise present in

experimentally measured data. In panels B and C of Fig. S4 a uniformly distributed noise

of width corresponding to 1 and 5 pixels, respectively, have been added to the function y(x)

before sampling it to obtain the data for analysis. We observe that a smaller value of ∆

does a better job of reproducing the expected curvature near the vertex in absence of noise.

However, in the presence of noise, a larger value of ∆ is needed to average out the effect of

noise. The value ∆ = ℓbc chosen for the analysis is an good compromise for the typical level
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of noise present in the experimental data.
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FIG. S4. Effect of varying the value of ∆ in the data analysis protocol. Smaller values of ∆ give a

better match to the expected curvature in the limit of low noise. As the noise in data is increased

the curves obtained with lower values of ∆ become more noisy. ∆ ≈ ℓbc seems to be a good choice

for ∆.

As described in the main text, in our data analysis algorithm the data is sampled in a

different way for the interval containing the vertex compared to other intervals. In each

iteration, we choose one data point randomly with uniform probability from all other in-

tervals, however, from the interval containing the vertex the data point is chosen randomly

with a normal probability distribution centered at position of vertex. Fig. S5 shows the

significance of this step. If we sample the interval containing the vertex in the same way

as other intervals, the position of the cusp varies slightly from iteration to iteration. As a

result when the average is calculated the cusp is smoothed out (Fig. S5 blue curve). On the

other hand choosing the vertex preferentially reduces this noise and helps in capturing the

non-smooth nature of the curvature (Fig. S5 red curve).

C. Experimental details regarding the axially symmetric case

In the axially symmetric case, an air bubble is introduced underneath a thin film floating

on water surface to create a three-phase contact line. In order to image the film profile,

the polystyrene film is fluorescently tagged with the dye Nile Red. Before spin-coating
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FIG. S5. The blue curve shows the curvature κ(s) obtained if we allow each data point in the

interval containing the vertex to be chosen with equal probability. We notice that the cusp in

the curvature present in the actual function (black curve) is smoothed out. In the data analysis

protocol adopted, in the interval containing the vertex, we select points with a normal probability

distribution centered at the vertex and having a width comparable to the typical error in the

measurement of the vertex (red curve).

polystyrene, Nile Red is dissolved in polystyrene-toluene solution at a concentration of

10−6wt %. After spin coating, we obtain films that can be excited by a sheet of green

laser, using a scheme similar to that illustrated in Fig. 2A of the main text, to get the solid-

vapor interface. The red-channel of a typical image obtained using this method is shown in

Fig. S6A. As can be noticed in the image, the liquid-vapor interface is not visible in this

scheme. We, therefore, also capture a bright field image using the same setup under normal

room lighting, which reveals the lower part of the air-bubble as shown in Fig. S6 B. In Fig.

S6 C, we show an image where Fig. S6 B has been overlayed on Fig. S6 A. The red dashed

curve shows a circular curve fitted to the visible part of the air bubble.
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FIG. S6. (A) Image (red-channel) of the film profile in the axially-symmetric geometry obtained

using fluorescent imaging. (B) Bright field image capturing a part of the air-bubble. (C) Image B

overlayed on image A. The red dashed curve is a circle fitted to the visible part of the air-bubble.

D. Note on error bars in the measurements

In order to compute the curvature, we divide the whole data set into intervals of length

∆ and choose one data point from each interval. A spline function of order 3 made up

of Hermite polynomials is generated using the data points sampled in each iteration (i)

and the curvature κi(s) is computed on this spline function at every nth(∼ 10) point of

the original data. The process is repeated a large number of times (N), selecting a different

sampling of data points randomly in each iteration, such that the whole data set is adequately

represented. The curvature profiles obtained from individual data samples are averaged to

obtain the final κ(s) curve: κ(s) = 1
N

∑N
i=1 κi(s). The variance in κ(s) is computed as

σ2
κ(s) =

1
N

∑N
i=1(κi(s)− κ(s))2. The error bars on κ(s) are computed as σκ(s)/

√
n. Fig. 2C

of the main text shows the typical error bars measured.

II. THEORY

This part of the SI consists of two subsections. In the first, we describe a variational

analysis approach to obtain the force balance, Eq. (9), as an Euler-Lagrange equation, whose

solution is an extremum of the energy of the liquid-sheet-vapor system. The variational

approach helps to clarify the difference between the discontinuities exhibited in peeling

from a liquid subphase, Eq. (3), and a rigid substrate, Eq. (1). The primary purpose of

this derivation is to substantiate the origin of the term γlv sin θY δd(s) in the force balance

equation (9), which was explained in the main text as the normal component of localized
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force γlv exerted at the contact line on the sheet by a liquid-vapor interface of surface tension

tilted at an angle θY with the tangent to the sheet’s mid-surface. Since this localized force

is purely capillary, and does not depend on liquid gravity (which only affects the shape at

scales ∼ ℓc), we first ignore gravity and address instead a more elementary set-up of a liquid

drop of finite volume in contact with a sheet. In the next subsection we elaborate on the

solution of the capillary elastica, Eq. (9), which is given by Eqs. (11) and (12) and shown

as the solid blue curves in Fig. 2B-D (and the correction due to the effect of liquid gravity,

shown as red solid curves in Fig. 2C-D and dashed blue in Fig. 2B).

A. Variational analysis

1. Drop on sheet

We consider the energy of an inextensible solid film of length L in contact with a liquid

drop. Following Ref. [1], we assume a 1D geometry, where both the sheet (of length L) and

the liquid drop (of cross-section area A0) are infinite in the ẑ direction, perpendicular to the

plane in Fig. S7A. Retaining the notations of the main text, (but ignoring for now liquid

gravity), we denote the shape of the planar cross-section by X⃗(s), where 0 < s < L is the

arclength of the sheet’s midsurface, and θ(s) is the angle between the tangent t̂(s) = dX⃗/ds

and the horizontal x̂ axis. We assume that the sheet is sufficiently long such that the liquid

contacts it in a finite interval ∆s ≡ s2 − s1, where 0 < s1 < s2 < L. Thus, the variables

(degrees of freedom), over which the energy functional U must be minimized, are the shape

X⃗(s) of the sheet’s midsurface, and the contact coordinates s1, s2. We further assume that

edges of the sheet are pulled by a tensile load (force/length) T , oriented along the x̂ axis.

The total energy per unit length along ẑ, of the liquid-vapor-sheet system is:

U = Ubend + Usurf − p(A− A0)− TD (S4)

Here, the bending energy Ubend{X⃗(s)} = 1
2
B
∫ L

0
κ(s)2ds, where B is the bending modulus

and κ(s) = |n̂dt̂/ds| is the curvature of the sheet’s midsurface, and the surface energy is

Usurf{s1, s2} = γlvLliq + (γsl − γsv)∆s, where Lliq is the length of the liquid-vapor interface.

The third term in Eq. (S4) enforces the liquid volume constraint (which becomes a liquid’s

cross-sectional area constraint in our 1D geometry), for the area A{X⃗(s), s1, s2} enclosed

between the liquid-vapor interface and the sheet, and the pressure p is the corresponding
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Lagrange multiplier. The last term is the work done by tensile load T , where D{X⃗(s)} ≡∫ L

0
dx =

∫ L

0
cos θ ds is projection of the sheet’s length onto the horizontal axis x⃗. Note that

for clarity, we prescribed the actual variables on which each term in Eq. (S4) depends.

Liquid

Gas

T
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B C

FIG. S7. (A) A schematic figure showing a one-dimensional “drop-on-elastica” configuration,

subjected to tensile load, that we address in Sec. (IIA 1). (B) Variation of the contact coordinate

s1 → s1 + ds1 . (C) variation of the shape X⃗(s) → X⃗(s) + ζ(s)n̂(s).

The equilibrium (force balance) equation are:

δU
δs1

=
δU
δs2

= 0 , (S5)

which must be supplemented by the equations that describe the variation of the solid’s

midsurface’s shape, X⃗(s) → X⃗(s) → X⃗ + ζ(s)n̂(s), where n̂(s) is the normal to the shape,

defined by n̂t̂ = 0 =⇒ n̂(s)x̂ = − sin θ(s):

δU
δζ(s)

= 0. (S6)

Let us assume now some smooth shape X⃗(s), and consider the variation of the energy U ,

as expressed in Eqs. (S5) and (S6).
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The liquid-vapor interface: In fact, the degrees-of-freedom of U include also the actual

shape of the liquid-vapor interface, which determines Lliq and A. However, for a given

smooth sheet’s shape X⃗(s) and contact coordinates s1, s2, the minimization of γlvLliq −

p(A − A0) reduces to the standard Laplace problem (i.e. minimization of the surface area

of a fixed volume or the perimeter of a fixed area). This implies that the liquid-vapor

boundary is a part of a circle, whose curvature κℓ is determined by the shape X⃗(s) in the

interval s1 < s < s2 and the drop’s cross-sectional area A0. This part of the minimization

also determines the pressure p = γκℓ, exerted by the liquid drop on the wet part of the

sheet.

Eq. (S5): Again, for a given smooth sheet’s shape X⃗(s), consider variation of s1 (equiva-

lently s2), that is – “sliding” the contact line along a given shape of the sheet. Such a varia-

tion does not affect Ubend or TD. Furthermore, as Fig. S7B shows, a variation s1 → s1+ ds1

(i.e. an infinitesimal ds1) affects only O(ds1)
2 change to the value of the liquid area func-

tional A (alternatively, the curvature κℓ). Hence, the only term in Eq. (S4) that undergoes

O(ds1) change is δUsurf , and Eq. (S5) becomes δUsurf/δs1 = 0. Now, basic trigonometry

shows that δUsurf = (γsl − γsv + γlv cos θc)ds1, where θc is the contact angle between the

liquid-vapor interface and the wet portion of the sheet. Consequently, Eq. (S5) yields the

YLD law, θc = cos−1 γsl−γsv
γlv

. This part of the calculation merely generalizes the classic YLD

law (for a liquid drop on a flat, rigid solid surface) to an inextensible solid sheet.

Eq. (S6): We finally turn to variation of the sheet’s shape X⃗(s). First, the liquid-vapor

surface energy, γlvLliq is affected only by ζ(s1) and ζ(s2), and using basic trigonometry once

again (Fig. S7C) shows that δLliq = −γlv sin θc(ζ(s1)+ ζ(s2)) = −γlv sin θc
∫ L

0
ds ζ(s)(δd(s−

s1) + δd(s − s2)). Second, we have that δA =
∫ s2
s1
ds ζ(s). Thus, recalling that we proved

already θc = θY , we find that δ[γlvLliq − p(A − A0)] =
∫ L

0
ds {−p(s) + γlv sin θY [δd(s −

s1) + δ(s − s2)]}, where p(s) = γlvκℓ for s1 < s < s2 and zero othrwise. This is the total

capillary force, exerted by the liquid volume and the liquid-vapor interface on the sheet.

The analogous terms comprise the RHS of Eq. (9).

Now we consider the variation of the remaining terms in U with ζ(s), namely:

1

2
Bδ

∫ L

0

ds κ(s)2 + (γsl − γsv)δ

∫ s2

s1

ds− Tδ

∫ L

0

ds cos θ(s) . (S7a)
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Following Ref. [2], we use the following relations:

ds → ds[1− κ(s)ζ(s)] (S7b)

cos θ(s) = t̂(s) · x̂ → t̂(s) · x̂+ ζ ′(s)n̂(s) · x̂ = cos θ(s)− sin θ(s)ζ ′(s) (S7c)

κ(s) → κ(s) + ζ ′′(s) + κ2(s)ζ(s) . (S7d)

Let us discuss the variation of the various terms in Eq. (S7a): (i) The first relation, Eq. (S7b),

implies intextensibility of the deformation, X⃗(s) → X⃗(s)+ ζ(s)n̂(s), must be supplemented

by a constraint, C
∫ L

0
κ(s)ζ(s)ds, where C is a Lagrange multiplier. Notably, the variation

(γsl − γsv)δ
∫ s2
s1
ds only affects the value of the constant C in the wet portion of the sheet,

s1 < s < s2; (ii) Eqs. (S7b) and (S7c) show that −Tδ
∫ L

s=0
ds cos θ(s) = 0 (where we used

integration by parts); (iii) Eqs. (S7b) and (S7d) show that 1
2
Bδ

∫ L

0
ds κ(s)2 = B

∫ L

0
ds κ′′(s)+

1
2
κ3(s) , where again we used integration by parts.

Combining those pieces together, we find that Eq. (S6) reduces to:

B[κ
′′
(s) +

1

2
κ3(s)]− C(s)κ(s) = −p(s) + γlv sin θY [δ(s− s1) + δ(s− s2)] , (S8)

where the pressure p(s) = γlvκℓ in the wet part, s1 < s < s2 and zero in the dry parts

(0 < s < s1 and s2 < s < L), and C(s) assumes a constant value in each of the 3 segments,

0 < s < s1, s1 < s < s2, and s2 < s < L.

Regardless of the values of integration constants C (which is attributed to the load T

exerted on the sheet, as in the classical elastica theory), the form of the capillary elastica

(S8) suffices to prove the jump condition for κ′, Eq. (3) of the main text.

2. Peeling sheet from liquid sub-phase

The energy functional for the peeling geometry that is the subject of the main text, differs

from Eq. (S4) in some related ways. First, the liquid volume constraint is replaced by the

liquid gravitational potential energy. Second, there is only one contact liquid-solid-vapor

contact line (taken to be at s = 0 in the main text). Third, the pulling forces that act

on the dry edge (Tpeel by the peeler) and the wet edge (γlv due to the liquid-vapor bath)

are not identical in magnitude and furthermore acts along different directions (vertical and

horizontal, respectively). Nevertheless, these differences do not affect the nature of the

localized force γlv sin θY δd(s) that act at the contact line, and hence the jump condition,
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Eq. (3), remain intact. Furthermore, they do not affect the form of the capillary elastica,

but only modify the value of the liquid pressure p that act on the wet part of the sheet, and

setting the values of the constant C in the dry and wet parts, as described in the main text.

3. Difference from peeling off a rigid substrate

The energy functional, Eq. (S4), includes the energetic contributions due to deformations

of the solid sheet and the liquid subphase. The variation of this energies give rise to force

balance equation (S8), whose RHS specifies the force exerted on the sheet for any configu-

ration (given by [X⃗(s), s1, s2]). The jump condition (3) is obtained directly from the this

force balance equation.

In contrast, when peeling from a rigid substrate the only energetic cost is that of the sheet,

while the rigidity of the substrate implies that there is no explicit energetic cost associated

with its deformation. Instead, the rigid substrate can exert an arbitrary force on the sheet,

such that we do not have here a force balance equation, analogous to Eq. (S8). In this

case, the jump condition at the contact line is obtained as a stationarity condition, which

balances the work done by moving the contact line a distance ds, and the corresponding

energetic costs of bending the sheet ∝ Bκ2ds. Such a stationarity condition underlies the

Obreimoff jump condition, Eq. (1) of the main text (see Ref. [3] for a succinct review of

various alternative ways to formally derive this).

B. Solution of the capillary elastica

It is useful to address the localized force on the RHS of Eq. (9) by considering it as a

“boundary condition” at the contact point s = 0 that separates the wet and dry parts of

the sheet. Namely, on both sides of the contact line, the profile of the film is determined by

Eq. (9). If liquid gravity is ignored, in each of the regions (s > 0 and s < 0) Eq. (9) can

be considered as a nonlinear 3rd order equation (ODE) for the angle ψ(s), whose solution

requires 3 boundary conditions (BCs). Eqs. (3) and (10) provide two of those six BCs.

In order to specify the other four BCs, we use the normalized arclength and curvature as

defined in the main text: s̄ = s/ℓbc, κ̄ = κℓbc, and consider the BCs at s̄ → ±∞. We also

rescale the vertical coordinate ȳ = y/ℓc (and note that in the vicinity of the contact line,
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i.e. s̄ ∼ O(1), we have that ȳ(s̄) ≈ H0 +O(
√
ϵ).) In terms of the rescaled variables, Eq. (9)

becomes: [
κ̄′′ +

κ̄3

2

]
− T̄ (s̄)κ̄ = −P̄ (s̄) + sin θY δd(s̄)

P̄ (s)=

 0 s̄ < 0

−
√
ϵȳ(s̄) s̄ > 0

T̄ (s̄) =

 Tpeel/γlv s̄ < 0

1 s̄ > 0
(S9)

In the terminology of singular perturbation theory, we seek to provide boundary conditions

for Eq. (S9) in the “inner region”, |s̄| ∼ O(1), by matching to an “outer region”, |s̄| ≫ 1.

In the dry part, the film reaches a straight vertical profile, such that: ψ, κ̄ → 0 as s̄ →

−∞. In the wet part, we consider distances ℓbc ≪ s ≪ ℓc from the contact line, such

that s̄ ∼ O(1/
√
ϵ) → ∞, where we recall that ϵ ≪ 1. In this “intermediate” region, the

bending-dominated vicinity of the contact line appears as a point (the “vertex”), whereas

the curvature due to the the gravity-dominated meniscus is small (∼ O(ℓ−1
c )), such that the

surface appears as a slightly curved plane, inclined at an angle ≈ ψ0 to the vertical. The

normalized curvature, κ̄ ≈
√
ϵf(ψ0), where ψ0 and f(ψ0) are given by Eq. (7), such that at

O(ϵ0) the six BCs are:

s̄→ −∞ : ψ → 0 ; κ̄→ 0

s̄→ +∞ : ψ → ψ0 ; κ̄→ 0

s̄ = 0 : [[κ̄]] = 0 , [[κ̄′]] = − sin θY (S10)

Furthermore, at O(ϵ0) the hydrostatic pressure in Eq. (S9) is negligible, and the equation

becomes integrable. The exact solution, which satisfies all BCs (S10) is given by Eqs. (11)

and (12). The tangent angle is readily obtained by integrating the curvature, yielding:

s̄ > 0 : ψ=ψ0+π−4 tan−1 tanh
s̄+ s̄w

2

s̄ < 0 : ψ= −π −4 tan−1 tanh[
s̄+ s̄d

2

√
r] (S11)

To facilitate comparison with experimental data, it is useful to incorporate the effect

of liquid gravity, namely, P̄ ∼ O(
√
ϵ) in Eq. (S9). When focusing on the “inner” region

(i.e. vicinity |s| ≲ ℓbc of the contact line), this amounts to computing the O(ϵ) corrections

to the above O(ϵ0) solution. This is obtained by substituting the formal expansion: κ̄ =

κ̄0+
√
ϵκ̄1+ · · · , in Eq. (S9) where κ̄0 is given by Eq. (11), and solving the resulting (linear)
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ODE for κ̄1 (where the BCs at s̄→ ∞ include now the O(
√
ϵ) terms that were neglected in

Eq. (S10)). Even though the relative effect of the correction
√
ϵκ̄1 is small in the inner region,

where κ̄0 is finite, it eventually dominates the curvature in the “outer” region, s̄→ ∞, where

κ̄0 → 0. Specifically, for s̄ ≫ 1, one finds that the dominant term on the LHS of Eq. (9) is

−γlvκ, whereas the RHS is approximated by −P ≈ ρgℓcf(ψ0) ≈
√
ρgγlvf(ψ0) (where f(ψ0)

is given by Eq. (7)). Consequently, at s̄ → ∞ we obtain: κ̄ ≈
√
ϵκ̄1 ≈ −

√
ϵf(ψ0). This

small, finite asymptotic value of the curvature in the wet part of the sheet is readily observed

in the red curves in Figs. 2C and 2D, and its effect is noticeable upon comparing the solid

and dashed blue curves in Fig. 2B.
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