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S.1. INVARIANCE ASSOCIATED WITH CONVECTED TIME DERIVATIVES OF THE
CONFORMATION TENSOR

Recall Sec. II in the manuscript on the kinematics of line elements, where the (Eulerian) time derivative
▽
ℓ= 0

following the flow (
▽
ℓ= Dℓ

Dt − ℓ ·∇u) implies the invariant solution ℓL ·F−1 = constant, from which the time variation
of ℓL(t;X) can be determined for a given flow or F (see Eq. (8)). Following similar steps, one can take a Lagrangian

view and integrate the equation
▽
A= DA

Dt − (∇u)
T ·A−A ·∇u = 0. We use the identities F−1 ·F = I, FT ·F−T = I,

∂F−T

∂t = −F−T · (∇u)
T
, ∂F

∂t = F ·∇u, and take a Lagrangian notation with A(x, t) = AL(t;X) to write

▽
A =

∂AL

∂t
− FT · F−T · (∇u)

T ·AL −AL · F−1 · F ·∇u

=
∂AL

∂t
+ FT · ∂F

−T

∂t
·AL −AL · F−1 · ∂F

∂t
=

∂AL

∂t
+ FT · ∂F

−T

∂t
·AL +AL · ∂F

−1

∂t
· F. (S1)

Right multiplying by F−1 and left multiplying by F−T yields

F−T ·
▽
A ·F−1 = F−T · ∂AL

∂t
· F−1 +

∂F−T

∂t
·AL · F−1 + F−T ·AL · ∂F

−1

∂t
=

∂

∂t

(
F−T ·AL · F−1

)
. (S2)

Thus, we conclude that
▽
A= 0 implies

∂

∂t

(
F−T ·AL · F−1

)
= 0 or F−T ·AL · F−1 = constant, (S3)

following the fluid motion, i.e., it is an invariant. Using the initial data, F−T ·AL · F−1 = AL(0;X) since F(0) = I,
which means AL = FT · AL(0;X) · F. For example, if AL(0;X) = I, i.e., an undeformed isotropic state, then
AL = FT · F.
Similarly, one can show for the lower-convected time derivative that

△
A = 0 implies ∂

∂t

(
F ·AL · FT

)
= 0. Thus,

F ·AL · FT is an invariant following the motion.
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S.2. INVARIANCE ASSOCIATED WITH THE CONSTRAINED CONVECTED TIME DERIVATIVE OF
THE CONFORMATION TENSOR

It is possible to extend the ideas introduced above for identifying invariances following the fluid motion when
▽
A= 0

to the case of
▽
A= −2A ·E ·A, corresponding to the constrained upper-convected time derivative.

Using a Lagrangian notation with A(x, t) = AL(t;X) and Eq. (S1),
▽
A= −2A ·E ·A can be expressed as

▽
A=

∂AL

∂t
+ FT · ∂F

−T

∂t
·AL +AL · ∂F

−1

∂t
· F = −2AL ·E ·AL. (S4)

Right multiplying by F−1 and left multiplying by F−T and using Eq. (S2), F−1 · F = I, and FT · F−T = I, Eq. (S4)
yields

∂

∂t

(
F−T ·AL · F−1

)
= −2

(
F−T ·AL · F−1

)
·
(
F ·E · FT

)
·
(
F−T ·AL · F−1

)
. (S5)

Using the identities ∂F
∂t = F ·∇u and ∂FT

∂t = (∇u)T · FT , the term 2(F ·E · FT ) in Eq. (S5) can be expressed as

2
(
F ·E · FT

)
= F ·

(
∇u+ (∇u)T

)
· FT =

∂F

∂t
· FT + F · ∂F

T

∂t
=

∂

∂t

(
F · FT

)
, (S6)

so that Eq. (S5) takes the form

∂

∂t

(
F−T ·AL · F−1

)
= −

(
F−T ·AL · F−1

)
· ∂

∂t

(
F · FT

)
·
(
F−T ·AL · F−1

)
. (S7)

or

∂GL

∂t
= −GL · ∂

∂t

(
F · FT

)
·GL with GL = F−T ·AL · F−1. (S8)

Under the assumption that GL (in fact, AL) is invertible and using the identities G−1
L = F ·A−1

L · FT and ∂GL

∂t =

−GL · ∂G−1
L

∂t ·GL, from Eq. (S8) it follows that

∂G−1
L

∂t
=

∂

∂t

(
F · FT

)
or

∂

∂t

(
G−1

L − F · FT
)
=

∂

∂t

(
F ·A−1

L · FT − F · FT
)
= 0. (S9)

It follows that F ·A−1
L · FT − F · FT = constant, following the fluid motion, i.e., it is an invariant. Using the initial

data, we obtain F ·A−1
L · FT − F · FT = A−1

L (0;X) − I since F(0) = I, which means A−1
L (t;X) = I − F−1 · F−T +

F−1 ·A−1
L (0;X) · F−T .

Similarly, one can show for the constrained lower-convected time derivative,
△
A = 2A ·E ·A, that

∂

∂t

(
F ·AL · FT

)
= 2

(
F ·AL · FT

)
·
(
F−T ·E · F−1

)
·
(
F ·AL · FT

)
. (S10)

Using the identities ∂F−T

∂t = −F−T · (∇u)
T
and ∂F−1

∂t = −∇u · F−1, the term 2(F−T · E · F−1) in Eq. (S10) can be
expressed as

2
(
F−T ·E · F−1

)
= F−T ·

(
∇u+ (∇u)T

)
· F−1 = −F−T · ∂F

−1

∂t
− ∂F−T

∂t
· F−1 = − ∂

∂t

(
F−T · F−1

)
, (S11)

so that Eq. (S10) takes the form

∂

∂t

(
F ·AL · FT

)
= −

(
F ·AL · FT

)
· ∂

∂t

(
F−T · F−1

)
·
(
F ·AL · FT

)
, (S12)

or

∂HL

∂t
= −HL · ∂

∂t

(
F−T · F−1

)
·HL with HL = F ·AL · FT . (S13)

Again, under the assumption that HL (in fact, AL) is invertible and using the identities H−1
L = F−T ·A−1

L ·F−1 and
∂HL

∂t = −HL · ∂H−1
L

∂t ·HL, from Eq. (S13) it follows that

∂H−1
L

∂t
=

∂

∂t

(
F−T · F−1

)
or

∂

∂t

(
H−1

L − F−T · F−1
)
=

∂

∂t

(
F−T ·A−1

L · F−1 − F−T · F−1
)
= 0. (S14)

Thus, F−T ·A−1
L · F−1 − F−T · F−1 is an invariant following the motion.
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S.3. LAGRANGIAN INTEGRATION OF THE OLDROYD-B CONSTITUTIVE EQUATION

The ideas introduced in Sec. II and III C for identifying invariances following the fluid motion can also be applied
to the evolution equation for the conformation tensor when elastic stresses are included. For example, consider the

Oldroyd-B constitutive equation (Eq. (36)),
▽
A= −λ−1

0 (A − I), where λ0 is a constant relaxation time. In this case,
using Eq. (S1) and a Lagrangian notation with A(x, t) = AL(t;X), we have

∂AL

∂t
+ FT · ∂F

−T

∂t
·AL +AL · ∂F

−1

∂t
· F = − 1

λ0
(AL − I). (S15)

Now, recalling the steps just above, right multiplying by F−1 and left multiplying by F−T yields

∂

∂t

(
F−T ·AL · F−1

)
= − 1

λ0
F−T · (AL − I) · F−1. (S16)

Thus, we find an ordinary differential equation for F−T ·AL · F−1 with a time-dependent forcing,

∂

∂t

(
F−T ·AL · F−1

)
+

1

λ0
F−T ·AL · F−1 =

1

λ0
F−T · F−1. (S17)

This equation is to be solved with initial data (suppressing dependence on X) F−T ·AL ·F−1 = AL(0) since F(0) = I.
Therefore, integrating, we obtain (see, e.g. [1, 2]),

F−T (t) ·AL(t) · F−1(t) = e−t/λ0AL(0) +
1

λ0

∫ t

0

F−T (t′) · F−1 (t′) e−(t−t′)/λ0 dt′, (S18)

or

AL(t) = e−t/λ0FT (t) ·AL(0) · F(t) +
1

λ0
FT (t) ·

∫ t

0

F−T (t′) · F−1 (t′) e−(t−t′)/λ0 dt′ · F(t). (S19)
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