Supporting Information

Cathodic electrodeposition of organic nanocomposite coatings reinforced with cellulose nanocrystals

Siham Atifi,^a and Wadood Y. Hamad *a,b,c

^a Transformation and Interfaces Group, Bioproducts Innovation Centre of Excellence, FPInnovations, 2665 East Mall, Vancouver, BC, V6T 1Z4

^b Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada)

^c Now with: Impossible Materials AG, Route de l'Ancienne Papeterie 106, 1723 Marly, Switzerland

*Corresponding author: Wadood Y. Hamad, <u>wadood@impossiblematerials.com</u>, Tel. +41 78 218 75 98

Sample ID	рН	σ (S/cm)	[PA] (%)	[CNC] (%)	Mass ratio CNC: PA	Size (nm)	PdI	Mobility (µmcm/Vs)
Pristine CNC (Batch 1)	4.396	381.6	-	4.06	-	80.1 ± 0.2	0.619	-5.138 ± 0.211
Pure PA (Batch 1)	4.654	712.2	10	0	0	130.2 ± 0.3	0.166	5.066 ± 0.121
	4.585	664.8	8.3	0	0	130.4 ± 0.7	0.175	5.078 ± 0.079
PA-CNC-0.05	4.574	765.6	8.3	0.050	0.006	130.7 ± 0.8	0.173	5.149 ± 0.089
PA-CNC-0.125	4.579	710.5	8.3	0.125	0.015	131.8 ± 0.6	0.187	5.142 ± 0.161
PA-CNC-0.25	4.564	716.6	8.3	0.250	0.030	137.6 ± 0.6	0.176	4.739 ± 0.063
PA-CNC-0.5	4.562	805.1	8.3	0.500	0.060	138.5 ± 1.0	0.213	3.875 ± 0.114

Table S1. Mixtures used for dispersibility tests of CNC in polyacrylate.

Size and mobility analysis was performed at 0.1% of mixture in DI H_2O .

PA-CNC mixtures sonicated at 2400 J/g.

Sample ID	рН	σ (S/cm)	[PA] (%)	[CNC] (%)	[DA] (mM)	Size (nm)	PdI	Mobility (µmcm/Vs)
Pristine CNC (Batch 2)	5.374	168.9	0	2.84	0	126.0 ± 0.9	0.304	-4.978 ± 0.300
Pure PA (Batch 2)	4.746	744.5	9.0	0	0	78.5 ± 0.4	0.179	4.164 ± 0.021
	4.784	719.0	8.3	0	0	79.1 ± 0.4	0.168	4.475 ± 0.018
PA-CNC	4.816	623.0	8.3	0.125	0	82.6 ± 0.5	0.192	4.875 ± 0.117
PA-CNC-DA	4.903	1216.9	8.3	0.125	5	81.5 ± 1.5	0.213	4.564 ± 0.135

Table S2. Mixtures used for dispersibility tests of DA monomer in PA-CNC system.

Size and mobility analysis was performed at 0.1% of mixture in DI H₂O.

PA-CNC-DA mixtures sonicated at 2400 J/g.

Table S3. Characteristics of coating suspensions used for EPD on HSLA substrates.

Sample ^{a,b}	[CNC](%)	[PA] (%)	рН	σ (S/cm)	Size (nm) ^c	PdI ^(c)	Mobility (µmcm/Vs) ^c	ζ potential (mV) ^c
CNC								-59.4 ± 2.6
PA-1	0	8.3	4.849	770.4	122.3 ± 0.2	0.162	5.051 ± 0.156	64.4 ± 2.0
PA-2	0	8.3	4.901	724.2	61.1 ± 0.6	0.185	4.978 ± 0.085	63.5 ± 1.1
PA-3	0	8.3	4.784	719.0	79.1 ± 0.4	0.168	4.475 ± 0.018	57.1 ± 0.2
PA-CNC-1	0.125	8.3	5.061	769.7	78.0 ± 0.9	0.305	4.759 ± 0.155	60.7 ± 1.9
PA-CNC-2	0.125	8.3	4.869	777.5	69.8 ± 0.3	0.252	3.616 ± 0.119	46.1 ± 1.5
PA-CNC-3	0.125	8.3	5.299	672.8	90.9 ± 3.0	0.272	3.587 ± 0.049	45.8 ± 0.6
PA-CNC-PDA-1	0.125	8.3	5.091	1075.1	79.1 ± 0.6	0.317	3.674 ± 0.090	46.9 ± 1.2
PA-CNC-PDA-2	0.125	8.3	4.805	1111.9	91.4 ± 0.4	0.408	3.665 ± 0.189	46.7 ± 2.4
PA-CNC-PDA-3	0.125	8.3	5.052	1057.0	88.35 ± 0.8	0.273	3.249 ± 0.123	41.5 ± 1.6

^a Pristine CNC (Batch 2) was used for these sets of experiments.

^b Dopamine concentration in the mixture was set at 5 mM and PA concentration at 8.3%.

^c DLS and ELS analysis were performed at 0.1% of mixture in DI H₂O.

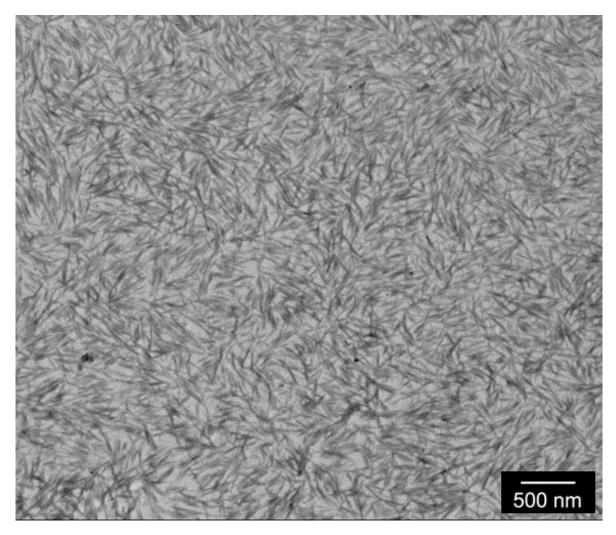
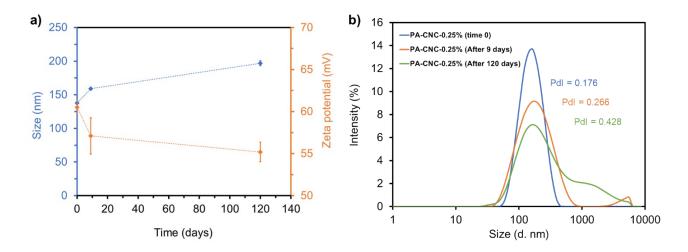
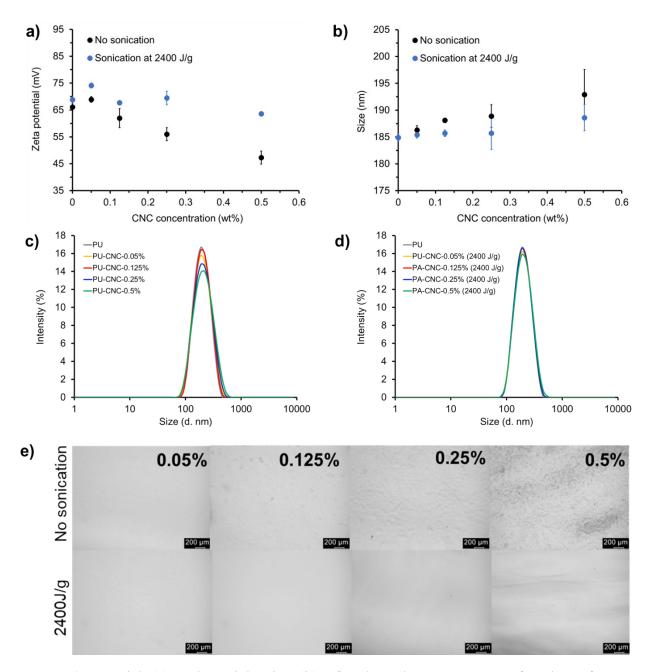




Fig. S 1. SEM image showing the good dispersion of sulfated CNC crystallites onto a glass slide.

Fig. S2. Effect of storage time on ζ -potential (a) and particle size distribution (b) of PA-CNC suspension at 0.25% CNC concentration sonicated at 2400 J/g.

Fig. S3. ζ-potential (a) and particle size (b) of Polyurethane-CNC as a function of CNC concentration before and after sonication at 2400 J/g. Size distribution of PU-CNC suspensions at different CNC concentrations before (c) and after (d) sonication at 2400 J/g. (e) Optical microscopy images of the PU-CNC cast films on glass slides.

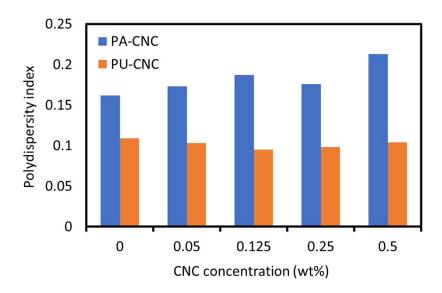
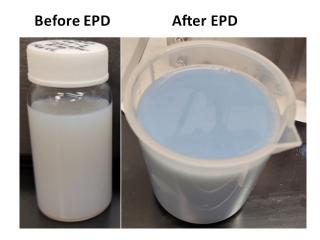
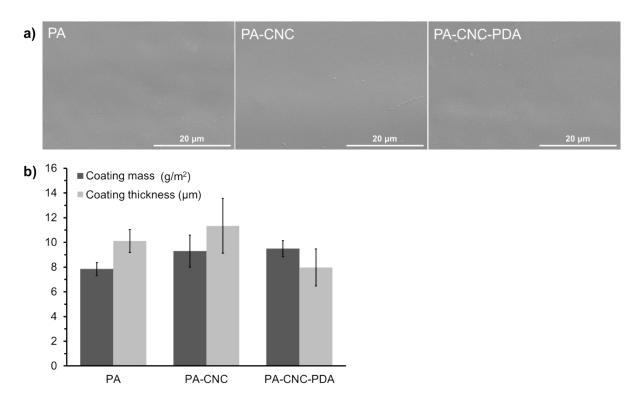
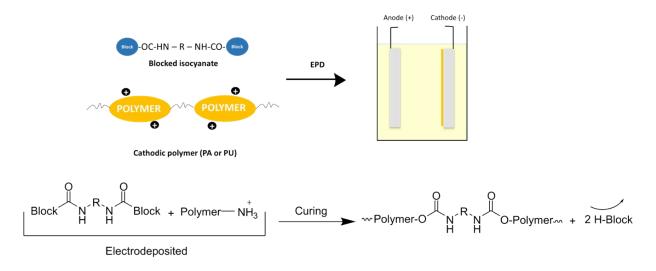


Fig. S4. Polydispersity index of PA-CNC and PU-CNC sonicated at 2400 J/g.

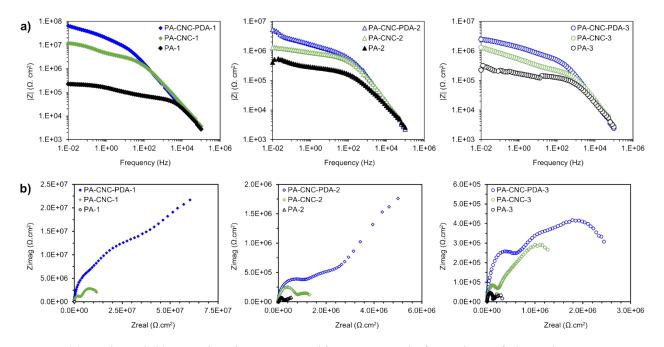

Fig. S5. Appearance of PA-CNC-PDA mixture before and right after the EPD process.

Fig. S6. (a) SEM topography images taken at low magnification of the surface of PA, PA-CNC and PA-CNC-PDA nanocomposite coatings, and (b) their deposit mass and thickness.

Fig. S7. Curing mechanism of the electrodeposited cathodic polymer and blocked isocyanate. When the blocked isocyanates are exposed to high temperature during curing, the blocking entities are released and the reactive NCO groups of the deblocked isocyanate will bond to OH or NH groups of the cathodic polymer.

Fig. S8. (a) Bode and (b) Nyquist plots measured in 0.1M NaCl after 5 days of electrolyte exposure for PA, PA-CNC and PA-CNC-PDA coating replicates prepared using three different stock PA suspensions.