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1 Flow curves of the alginate suspensions

The flow curve of the alginate suspension is obtained using an AR-G2 rheome-

ter from TA instruments using a cone plate geometry with a steel cone of 40

mm diameter and 2 degrees angle.

Figure 1: Rheology curve of the alginate solution used to produce the droplets

We first use a pre-shear step where an intense pre shear at 1000 s-1 is
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applied for 60 seconds to all samples prior to the shear flow curve measure-

ment.

2 Mechanical properties of the alginate hy-

drogels

The goal of the compression experiments is to determine an order of magni-

tude of the compression modulus of the alginate-zirconia hydrogels.

We perform the compression tests on flat gel cylinders of 10 mm diameter

and 4 mm in height with an Instron tensile meter using a flat tool of 2 cm of

diameter. To obtain the cylinders we pour a beaker with an alginate zirconia

suspension and then add a calcium solution on top of the solution to trigger

the solidification. After two weeks we remove the hydrogel cylinder out of

the beaker. We chose this time as the mechanical properties tend to vary

over time and stabilize after two weeks toward a reproducible measurement.

To obtain the desired diameter we use a round cutter. Moreover to ensure a

good planeity of our samples, we use a razor blade to obtain a flat surface.

Indeed the hydrogel tends to get curved during the solidification process.

The stress strain curve presented below enables to obtain a rough estimation

of the order of magnitude of the elastic modulus of the order of 25 kPa. If

the gel cylinder was purely elastic one would expect a linear variation of the

stress with the applied strain which is not the case. We suspect that for

small strains the sample unperfect flatness disturbs the measurement. At

larger strains we expect that plastic deformation might lead to a non linear
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relation between stress and strain.

We note that the measurements presented below are performed on hy-

drogel aged of two weeks, which is probably much higher than the modulus

of the gelled layer a few seconds after the droplets enter in the calcium bath.

The results probably largely overestimate the value of the elastic modulus of

the freshly gelled layer of the droplets falling into the bath. In the article

we arbitrarily take a value of the elastic modulus of the order of 10 kPa to

estimate the tensile stress in the gelling layers.

Figure 2: Stress strain curves of the alginate hydrogels

Figure 3: schematic drawing explaining how we perform the mechanical mea-
surements

3 Mass loss of the alginate beads
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The goal of this section is to obtain a rough estimation of the weight loss of

the alginate beads as a function of the calcium concentration. We dripped

our suspension in a bath of calcium and weighed the beads as a function of

time until a steady state is reached. As shown below we find that the mass

of water expelled is of the order of 10 to 15 percent.

Figure 4: Mass loss of the alginate hydrogels due to syneresis

4 Experimental relaxation of the suspension

droplets in an immiscible oil - non gelling

case

We performed a number of experiments in a non reacting and immiscible

medium, oil. A typical relaxation curve is shown in Fig. 4.

Interestingly the droplet aspect ratio varies exponentially over time even-

though the droplets suspensions are a non Newtonian fluid. The droplet

relaxation time that we find experimentally, around 40 ms, is consistent with
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Figure 5: Droplet relaxation in an oil bath. The relaxation is exponential
with a characteristic time trel = 0.04 s.

a viscosity η ≈ 1 Pa.s, taking the oil/water interfacial tension of γ ≈ 0, 03

N/m that we measured independently. As the suspensions are shear thin-

ning fluids, their viscosity decreases with the shear rate. A viscosity η ≈ 1

Pa.s-1 found from the aspect ration relaxation time corresponds to a shear

rate γ̇ ≈ 100 s-1. This value is consistent with the impact shear rate defined

as γ̇ ≈ U/D ≈ 100 s-1, with U ≈ 1 m/s the impact velocity and D ≈ 1 mm

the diameter of the drop. γ̇ represents the shear rate in the drop during the

impact, assuming no slip conditions at the drop/bath interface. This result

means that the restructuration time of the fluid is longer than the relaxation

time of the drops and that the viscosity of the suspensions does not have

time to rise after the impact.

5 Numerical model

A lagrangian description of the displacement field is convenient because both

elasticity and free surfaces are readily included. Numerical solutions were
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obtained with the finite elements technique (Abaqus [1]). The model is two

dimensional, i.e. we perform a plane strain calculation with an initially

elliptic cross section relaxing towards a circular cross section.

5.1 Constitutive equation of the material

The liquid core is modeled as a linear viscoelastic solid with a negligible long

time elastic shear modulus µ∞ and a relaxation time τ = η/µ0 where η is

the viscosity and µ0 the short time elastic shear modulus. This description

is efficient because moderate deformations are involved. For the material

constitutive relation, we take a simple exponential relaxation with a charac-

teristic time τ

¯̄σdev(t) = µ0

∫ t

0
exp

(
t− t′

τ

)
d¯̄εdev(t

′)

dt′
dt′ (1)

where ¯̄σ and ¯̄ε denote the stress and strain tensors, the subscript dev the

deviatoric parts.

In Abaqus the constitutive relation Eq. 1 can be obtained with viscoelas-

ticity treated as a one-term Prony series (*Viscoelastic, time = PRONY) and

the requested material properties are the short time Young’s modulus Et=0,

the parameter g = 1− (Et=∞/Et=0) and the relaxation time τ . To determine

Et=0 we use the relation µ0 = Et=0/3. In that scheme, we need to ensure

negligible initial elastic strains and negligible final elastic stresses: since the

stress level is of the order of γ/R ' 1, we typically take Et=0 = 300, τ = 0.01

and g = 0.9999. The material is nearly incompressible in the liquid phase

(ν = 0.499).
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5.2 Numerical scheme for the gelling droplets

We introduce a scalar field C representing the Ca2+concentration. At the

surface of the droplet we keep C constant equal to the concentration of the

bath Cbath while inside the droplet, C is initially zero. In the numerical

scheme, the initial bath concentration is applied through a fast but smooth

step at t = 0. Calcium diffusion is allowed inside the droplet following a

Fickian law

∂C
∂t

= κ∆C (2)

where κ is the diffusion coefficient. For that purpose, the most straight-

forward strategy is to map the Ca2+ concentration C to the temperature

field (element type CPE4HT), using C values of the order of unity. Calcium

diffusion is implemented through standard heat diffusion (*Conductivity).

The temperature field obeys cpρ
dT
dt

= ∇ · (κT∇T ) where cp is the specific

heat, ρ the density and κT the thermal conductivity. Numerically, we take

cp = ρ = 1 and take the thermal conductivity κT numerically equal to the

Ca2+ diffusion coefficient κ.

To model the gelation process itself, i.e. the transformation of the New-

tonian liquid into an elastic solid under the action of Ca2+, we let the relax-

ation time of the Maxwell fluid increase steadily with calcium concentration

C, keeping the short time elastic modulus µ0 constant. Such a slowing down

of the dynamics is a situation commonly encountered for materials under-

going a glass transition from high to low temperatures. Following standard

approaches used to describe this transition [1] we introduce a local time ξ(t),

the so called reduced time, which decreases sharply with the calcium con-
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centration. More precisely we use the integral equation:

ξ(t) =
∫ t

0

ds

A(C(s))
(3)

with t the simulation time and A a shift factor which varies with the con-

centration through the simple phenomenological relation

log (A(C)) = βC (4)

β sets the concentration for which the material has effectively become a solid.

For a concentration C ' 1, β = 10 results in a reduction of the actual time

by a factor 10−10 or alternatively a 1010 increase of the relaxation time. The

relaxation time being then much larger than the total simulation time, the

material effectively behaves as an elastic solid with a shear modulus given by

the instantaneous modulus µ0. Following our numerical scheme, in Abaqus

we use the standard WLF relation (*Trs) with TRS parameters 0, -1000,

100, closely approximating Eq. 4. We also ensure that gelification decreases

the Poisson ratio to 0.4 (linear with C): this evolution has been included for

consistency with the idea of transformation into a solid but it is not expected

to have a strong impact on the relaxation process.

Finally we also need to model the contraction εC of the material due

to syneresis: it is accounted for by applying an isotropic material strain

proportional to the Ca2+ concentration. The contraction coefficient is taken

as α. The order of magnitude of the eigenstrain can be estimated from

volumetric shrinkage 1
3
δV/V0 based on the measured macroscopic volume loss
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δV/V0 ≈ 15%. Note also that we have introduced a saturation concentration

Csat above which no more contraction is incurred. We use this saturation

concentration to normalize the concentrations so that we will use Csat =

1. This saturation creates a sharper gelation front at concentrations C >

Csat. As explained in the main text, this saturation concentration is a key

element to qualitatively reproduce all the experimental observations. The

strain induced by the Ca2+ (so called eigenstrain) is given by

εC = α C for C < Csat (5)

εC = α Csat for C ≥ Csat (6)

with α = −0.1. Roughly speaking, in the gelled layer, εC = −0.1. For

our numerical scheme, we developed a simple user function UEXPAN (in

incremental form).

An example model file is included (E3SB Conc AR 2 small mod 1p5.inp)

with the user routine uexpan1x sat.f for thermal expansion with saturation

at unit concentration. The model file also calls the file AR 2 small mod.inp

which contains the geometry, the mesh, the surfaces and the sets for an initial

aspect ratio of 2.5.

5.3 Simulation of the capillary relaxation of an elon-

gated droplet without gelation

We first calculate the relaxation of this purely Newtonian elongated ellipse

under the action of surface tension γ (Fig 7). For that purpose, surface
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a) b)

Figure 6: plots of RX and RY vs. time showing the impact of the material
relaxation time τ (a - κ = 0.001) and diffusion coefficient κ (b - τ = 0.01) on
droplet relaxation for Cbulk = 1 and an initial aspect ratio 1.5. A fit to a non
exponential relaxation with exponent 1.45 is also shown (dashed black line)

tension elements are applied to the free surface, following references [2, 3].

The initial cross section is elliptic with RX =
√

3, RY = 1/
√

3 i.e. an aspect

ratio AR = 3. The material parameters are γ = 1.0 and η = 1.0 and time

is normalized by the material relaxation time τ . A typical evolution of the

ellipse shape and the associated pressure distributions are shown in Fig. 7a

with three successive configurations. The time evolution of the aspect ratio

and pressure gradients are plotted in Fig 7b and Fig 7c. It is seen that the

ellipse relaxes towards a circle with radius RX = RY = 1, i.e. the final

aspect ratio AR = 1. The time evolution of the radii is exponential with a

characteristic time of

tc = ηR/γ (7)

corresponding to the classical capillary relaxation time for Newtonian liq-

uids [4, 5]. The pressure distribution clearly evidences a higher pressure at

the apex having the smallest radius of curvature, as expected from a Laplace
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pressure. The pressure gradient is the driving force for the liquid flow leading

to relaxation towards a circular shape (Fig 7c). All these results fully match

the expected behaviour for a Newtonian viscous liquid under the action of

surface tension, validating the numerical scheme.

a)

b) c)

Figure 7: Numerical results for the relaxation of a viscous liquid under the ac-
tion of surface tension. a) Representative snapshots of the elongated droplets
relaxation for η = 1 and γ = 1 at t=0, t=0.5 and t=1.0. The pressures at
the apices Rx and Ry are also displayed b) time evolution of the aspect ratio.
An exponential fit (small dashes - black), as predicted by small strain ana-
lytical calculations, is almost indistinguishable from the numerical result. c)
Pressure gradient as a function of time

5.4 Numerical results of gelling drops

To test the model, series of results were calculated for an initial aspect ratio

of 1.5, Cbath = 1 and a range of values of τ and κ. The evolution of RX and

RY with time for κ = 0.001 and varying τ is shown in Fig. 6 a. We observe

the expected slowing down of the droplet relaxation process as τ (or the
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viscosity η) increases. Similar results varying the diffusion coefficient κ are

shown in Fig. 6 b. The general evolution of the radii with time is affected by

a decrease of the diffusion coefficient κ in a manner which is roughly similar

to an increase in the relaxation time τ .

The evolution of the aspect ratio for different relaxation times and dif-

ferent diffusion coefficients is shown in Fig. 8 where the time axis has been

rescaled. The curves collapse, demonstrating the validity of the approximate

model. In fact, for equal κτ products, identical evolutions are obtained pro-

vided time has been rescaled. This result is to be expected: in fact, since

Ca2+ diffusion (Eq. 2) is independent from the droplet deformation, and be-

cause the strains incurred are moderate, it only provides time dependent

boundary conditions (under the form of eigenstrain field) from which the

solution to the evolution equation is computed. It would require extreme

deformations for geometrical effects to impact diffusion and thus couple the

equations. Since τ and κ play inverse roles in the time scales involved (see

e.g. Eq. ?? with η = µτ), there is effectively only one time parameter in the

calculation.

In Fig. 6 a, the non-exponential behaviour of the relaxation can be ob-

served as an inflection in the early stages of the relaxation. It is especially

clear for the larger values of the relaxation time and for the small (Y) radius.

As shown by the analytical results (Eq. 6 in the main text), this inflection

results from the increasing driving force incurred through the growth of the

surface stress layer, in contrast to the constant surface tension for the non

reactive oil-gel interface. Fits to the results in Fig. 6 are adequate when the

exponent is allowed to deviate from 1.5. For the different cases shown the
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exponent varies between 1.2 and 1.7. The difference from the predicted value

1.5 originates from the rather simplified representation of the surface layer

used to obtain Eq. 4 (main text) and to geometrical non linearities.

Figure 8: Impact of relaxation time and diffusion coefficient on droplet re-
laxation for Cbulk = 1 and an initial aspect ratio 1.5. Note that that once
rescaled, identical curves are obtained for equal κτ ratios (see text).

As shown in the main text, the ultimate stage of the relaxation does not

follow the same scaling : waiting longer when the viscosity is large is not

the same as waiting for a short time when viscosity is moderate because

at longer times bending resistance steps in due to increasing thickness of

the gelled layer. To test the prediction of the approximate analytical model

(Eq. ?? in the main text), we calculated relaxation curves with RX=3 and

RY =1 and Cbulk = 1, for different values of the diffusion coefficient. The

results are shown in Fig. 9 a. The transition is particularly visible in the

downturn which appears in the Y radius at large diffusion coefficient values.

This downturn reflects material contraction. In the aspect ratio plots (Fig. 9

b), this downturn is reflected with a minimum and when, following Eq.??,
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time is rescaled by κ, the minima fall at a nearly constant position of the

order of ε (Fig. 9 right). This result confirms our scaling approach.

Figure 9: plots of RX and RY vs. time showing the impact of the diffusion
coefficient on the shape relaxation process. Rescaled following Eq. ??, the
transitions, marked by a dip, all collapse.

References

[1] Abaqus reference manual. HKS, Providence, 2016.

[2] A Jagota, C Argento, and S Mazur. Growth of adhesive contacts for

maxwell viscoelastic spheres. Journal of applied physics, 83(1):250–259,

1998.

[3] Robert W Style, Anand Jagota, Chung-Yuen Hui, and Eric R Dufresne.

Elastocapillarity: Surface tension and the mechanics of soft solids. Annual

Review of Condensed Matter Physics, 8:99–118, 2017.

[4] Dominique Barthès-Biesel. Capsule motion in flow: Deformation and

membrane buckling. Comptes Rendus Physique, 2009.

14
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