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Supporting information

S.1. Bethe theory of percolation

Figure S1: a) Representation of a 1D (f=2) Bethe lattice, each node (blue circles) have 2
branches, that can be formed a link (green) or not (black). b) Bethe lattice with functionality
f = 3 c) Real lattice with some cyclic structures remarked in red.

The percolation theory studies the behavior of a network of interconnected nodes that

can be linked with each other (see Figure S1 a,b). It describes the phase transition between

the state where in the network there are some small clusters not connected between them,

when the number of links are small, and the state where most nodes are connected in an

infinite cluster (gel phase). In most real lattices (Figure S1 c) it is not possible to make

analytical predictions, however in Bethe’s lattice1 it is possible to obtain some analytical

results about the distribution of clusters, the gelation probability, the cluster size, etc. For

more details on the following derivations the reader is refereed to Rubinstein and Colby

textbook.2
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A Bethe lattice is defined as an infinite connected cycle-free graph where each node has

a fixed number of branches f, that can be forming link between to nodes with a probability

p. We can use the cycle-free assumption to obtain a prediction for the mean number of

neighbors that a node has in a lattice composed by s particles. In a cluster with s particles

the number of formed bonds will be s − 1, consequently on average each particle will be

connected to,

nneigh = 2
s− 1

s
(1)

Where the 2 arises from the fact that each bonds connects two particles.

Percolation in 1-D

The simplest case that we can study is a Bethe lattice with f = 2 (Figure S1 a). In this case

the clusters will be one dimensional chains composed by a given number of nodes.

Every chain, independently of its size, will necessarily have two free branches, and all the

other branches will be occupied. In fact, a cluster of size s, will have s occupied branches

and 2 free-ones. If the probability that a link is formed is p, the distribution of chains of size

s, will be,

ns(p) = ps(1− p)2 (2)

In a 1-D Bethe lattice, the only way to observe an infinite cluster is that all the nodes

were linked, consequently the phase transition will occur at a probability p = pc = 1. If

we define ξ = − 1
ln(p)

, we can rewrite equation X as a function of ξ and pc as,

ns(p) = (pc − p)2 exp(−s/ξ) (3)

where ξ is the connectivity length of the clusters. The Taylor expansion of ln(p) near pc,

is,
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ln(p) ≈ ln(1) +
1

pc
(p− pc) = −|p− pc| (4)

Thus, near the phase transition the connectivity length diverges as a power law,

ξ =
1

|p− pc|
(5)

Percolation in a general Bethe lattice

All the results previously obtained can be generalized to a Bethe lattice with an arbitrary

number, f of neighbors per node. If two nodes can be linked with a probability p, it is not

difficult to see that the mean number of first neighbors to the central node is C1 = fp , the

number of connections to the second generation C2 = p(f − 1)C1 and similarly, the number

of connections of the N generation is CN = (p(f − 1))NC1. When N tends to infinity, this

number diverges if p(f − 1) > 1, which provides the critical value of the binding probability

p = pc for the formation of a gel phase (infinite cluster),

pc =
1

f − 1
(6)

Note that if f=2, this condition implies a very strong binding affinity (pc → 1), meaning

the formation of an infinitely large linear chain. Using geometric arguments, it can be seen

that a clusters of size s > 0 (i.e. having s occupied nodes) will have sf = 2 + s(f − 2) free

nodes (e.g. for f=2, this corresponds to the two free nodes in the chain ends). The fraction

of clusters of size s follows a Binomial distribution,

ns = gsp
s(1− p)2+s(f−2) (7)

Where gs is the number of combinations of placing sf nodes in the cluster of size s, i.e,

gs =
f(fs− s)!

s!(fs− 2s+ 2)!
(8)
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We can calculate the connectivity length writing ns(p) as a function of ns(pc),

ns(p) = ns(pc)
1− p

1− pc

2
(

p(1− p)f−2

pc(1− pc)f−2

)s

(9)

which can be also written as,

ns(p) ∝ exp(−s/ξ) (10)

with ξ defined as,

ξ(p) =
−1

ln [p(1− p)(f−2)]− ln [pc(1− pc)(f−2)]
(11)

We can expand in Taylor series the logarithm near pc, to obtain how the connectivity

length diverges near pc. Let,

h(p) = ln

(
p(1− p)f−2

pc(1− pc)f−2

)
(12)

then:

d

dp
h(p) =

1

p
− f − 2

1− p
(13)

d2

dp2
h(p) = − 1

p2
− f − 2

(1− p)2
(14)

(15)

Evaluating h(p) and their derivatives in p = pc, we obtain h(pc) = dh
dp
(pc) = 0 and

d2h
dp2

(pc) =, and substituting f − 2 = 1/pc (eq 31) we obtain,

h(p) ≈ −1

2

(p− pc)
2

p2c(1− pc)
(16)
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Finally, we obtain that ξ diverges near pc as,

ξ ∝ |p− pc|−2 (17)

From equation X and substituting the expression of gs we can prove that ns decays as a

power law,

ns ∝ s−τ (18)

With τ = 5/2. That value can be obtained by substituting equation X and X +2 in equation

X+1, taking logarithms on both sides of the equation and using the Stirling approximation

ln(n!) ≈ n ln(n)−
√
n ln(2πn).

S.2. Cluster sizes and Flory exponents

We use Eq. 6 to fit the results for the cluster gyration radius against the number of particles

in the cluster s. Results are collected in Table S1 and Figure S2.

Table S1: Coefficients used to fit the cluster gyration radius using Eq. 6 for several values
of the average number of receptors per IONP f̄ . The Flory exponent (large cluster limit) is
ν∞.

f̄ c1 c2 c3 ν∞
2 9.75 0.45 24.29 0.500± 0.007
3 22.01 0.85 30.57 0.480± 0.004
4 22.29 0.85 30.57 0.480± 0.003
8 23.45 1.2 29.08 0.492± 0.005
12 21.24 1.1 28.50 0.493± 0.004
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Figure S2: Gyration radius of NMP clusters against cluster size. Fits to Eq. 6 are shown in
red.

S.3. Cluster size distributions

We present extra results for n(s), the distribution of clusters of mass s and recall that in

Bethe’s theory n(s) is normalized according to

∑
s=1

(s− 1)n(s) =
nbonds

fN
(19)

where nbonds is the number of bonds. Under the assumption that bonds are irreversible the

number of bonds is equal to the number of analytes if the system is not saturated of analytes

(ca < f
2
cp) and to the number of initially-free receptors, if ca > f

2
cp. Note that the factor

(s−1) in the left side of the equation 19 corresponds to the number of links in a cluster with

s particles (in the original formulation of the Bethe model, s denotes the number of links).

The cluster distribution can be calculated from the list of clusters as,

n(s) =
N s

cluster

fN
(20)
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Where N s
cluster is the number of clusters composed by s particles. Extracting the distribution

of clusters requires a large number of aggregates, which involve much more computational

time than determining the mean hydrodynamic size of the system. We repeated each run

between 10 and 150 times, depending on how fast n(s) tends to 0 (distributions that decay

more slowly require longer statistics). Typically the total number of analyzed clusters was

about tens of thousands.

Results for n(s) obtained from simulations of IONPs with average functionality f̄ =

{8, 12} are shown in Figure S3. Red lines correspond to Eq. 7 using the effective functionality

feff indicated in the legend. Blue lines are the distributions for a Bethe lattice with fixed

f = f̄ .

Figure S3: Cluster distributions n(s) (proportional to the number of clusters of size s) for
f̄ = 8 (a-d) and f̄ = 12 (e-h) at increasing analyte concentration. Nanoparticle concentration
fixed at cp = 1.27 µM.
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S.4. Receptor distribution

Results for the statistics of the number of receptors per nanoparticle are shown in Fig. S4,

comparison is made between a Poisson distribution, a binomial distribution and random

sampling.

Figure S4: Distribution of receptors on the IONP: comparison is made between a Poisson
distribution, a binomial distribution and random sampling (see text). a) f̄ = 2 and b)
f̄ = 12. The inset in (a) shows the probability of having particles without receptors (f = 0).
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S.5. Distribution of occupied receptors

In order to obtain an analytical equation to predict the probability of a particle having focc

receptors in a system with a particle concentration of cp, an analyte concentration of ca, and

a mean number of receptors per particle f̄ , we use:

P (focc) =
∞∑

f=focc

Pr(f) P (focc|f) (21)

Where Pr(f) is given by equation 2 of the main text and P (focc|f) is the probability that a

particle with f receptors has focc occupied receptors. This probability can be calculated using

the notion that the probability that a receptor is occupied is equal to the number of analytes

in the system divided by the total number of receptors in the system, pocc = ca/(f̄ cp). If

we assume that both the number of analytes and receptors are large enough such that this

probability does not change after the formation of one bond, then the probability P (focc|f)

is given by a binomial distribution:

P (focc|f) =
(

f

focc

)
pfoccocc (1− pocc)

f−focc (22)

Substituting equations S22 and 2 into equation S21, and then reordering the terms, we

obtain:

P (focc) =
pfoccocc e−f̄

focc!

∞∑
f=focc

(1− pocc)
f−focc

(f − focc)!
(f̄)f (23)

Multiplying and dividing by (f̄)focc results in:

P (focc) =
(f̄ pocc)

focc e−f̄

focc!

∞∑
f=focc

(1− pocc)
f−focc

(f − focc)!
(f̄)f−focc (24)

Finally, by recognizing that the term inside the summation is equal to the exponential

of f̄(1− pocc) and using the fact that pocc = ca/(f̄ cp), we obtain the final expression:
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P (focc) =
e−ca/cp

focc!

(
ca
cp

)focc

(25)

Figure S5 shows the distribution of occupied receptors in two cases ca = cp and in a

media saturated with analytes ca = 5cp.

Figure S5: Distribution of occupied receptors (primary links) on the IONPs obtained using
Eq. 12 and random sampling when: a) the concentration of particles is equal to the concen-
tration of analytes ca = cp and b) under saturation ca = 5cp.
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S.6. Magnetization field (MH) curves of the IONPs

The MH curves of the nanoparticles where measured in quasi-static conditions at 4K and

300K using a SQUID. IONPs present a superparamagnetic behaviour (in absence of field the

system is not magnetized) and hence in absence of field the magnetic interactions between

IONPs are absolutely negligible.

Figure S6: Mass normalized M-H curves of the nanoparticles employed in the experiments
measured with a SQUID at 4K and 300K under quasi-static conditions
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S.7. Number of formed bonds as a function of time

With the purpose of ensuring that we were running the simulations for a time long enough to

reach the final state of the aggregates we measured the number of links formed in the system

as a function of time. In Figure S7 we can see that for all the concentrations of analytes we

reached a plateau in the number of bonds, that means that all links that can be formed, are

formed during the simulation, so we are reaching the final state.

Figure S7: Evolution of the number of bonds created in a simulation over time, for different
values of analytes concentration and f̄ = 4 receptors per particle.

S.8. Schematic of two bonded IONPs

The interaction between two bonded IONPs is modelled using a harmonic interaction that

causes a force and a torque on each particle that depends on the parameters indicated in

Figure S8.

Figure S8: Geometrical parameters involved in the calculation of the bonding forces and
torques. The receptor length is ℓ ≈ 2 nm.
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