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S1 SAXS measurements

Lipid mesophases have characteristic scattering patterns, with Bragg peaks ap-
pearing in the following ratios:

• x(n,Lα): 1 : 2 : 3 : . . .

• x(n,HII): 1 :
√

3 :
√

4 :
√

7 : . . .

• x(n,QDII):
√

2 :
√

3 :
√

4 :
√

6 :
√

8 :
√

9 : . . .

so that the lattice parameter can be calculated as:

a(n,Lα) =
2π

qn
× x(n,Lα)

a(n,HII) =
2√
3

2π

qn
× x(n,HII)

a(n,QDII) =
2π

qn
× x(n,QDII)

The sponge mesophase has a broad peak, the centre (qc) of which defines a
bilayer-bilayer correlation length [1–3]:
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Figure S1: 1D SAXS patterns showing different weight ratios of lipid:solvent

a =
2π

qc
(1)

In the case of micelles, a core-shell ellipsoid form factor has a fringe after a
first minima, which is known to correlate well with overall micelle size [4]. This is
distinguishable from the broad scattering peak of the sponge mesophase, which
does not exhibit such a minima. The centre of the peak, qc can be used for this
purpose:

d =
2π

qc
(2)

where d is the approximate micelle diameter.

S2 Excess solvent content

Our method of sample preparation differed from that of Cherezov et al. by using
excess lyotropic conditions [5]. To ensure that our results were reproducible and
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Figure S2: A summary phase diagram for the four single-doped systems studied
in this work.

consistent, we measured the excess solvent mesophase behaviour using three
different lipid:solvent weight ratios.

Samples were prepared by weighing a quantity of monoolein, and adding a
corresponding weight of solvent at a fixed butanediol proportion of 40% v/v
as required. The samples were mixed mechanically, transferred to an X-Ray
capillary, sealed, and put through 3 freeze-thaw cycles to ensure equilibrium.
They were measured for 600s in a q range of 0.015–0.65 Å−1.

The azimuthal scattering patterns obtained and plotted in Figure S1 show
that beyond an excess point, there is no substantial change in the mesophase be-
haviour of the monoolein/water/butanediol system between the different weight
ratios. The correlation lengths measured for the 0.4, 0.25, and 0.14 %w/w sys-
tems were 101 Å, 111 Å, and 101 Å respectively.

S3 Summary phase diagram

In figure Fig. S2, we show a summary phase diagram of the single-doped monoolein
systems studied in this work.
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S4 Scattering patterns

S4.1 MO

Figure S3 shows integrated SAXS patterns for a pure monoolein system with
varying proportions of butanediol in the solvent.

S4.2 Cholesterol

Figures S4 to S7 show integrated SAXS patterns for systems doped with 2.5%
mol (Fig. S4), 5% mol (Fig. S5), 7.5% mol (Fig. S6), and 10% mol (Fig. S7)
cholesterol.

S4.3 DOPE

Figures S8 to S11 show integrated SAXS patterns for systems doped with 2.5%
mol (Fig. S8), 5% mol (Fig. S9), 7.5% mol (Fig. S10), and 10% mol (Fig. S11)
DOPE.

S4.4 DOPC

Figures S12 to S15 show integrated SAXS patterns for systems doped with 2.5%
mol (Fig. S12), 5% mol (Fig. S13), 7.5% mol (Fig. S14), and 10% mol (Fig. S15)
DOPC.

S4.5 DDM

Figures S16 to S19 show integrated SAXS patterns for systems doped with 2.5%
mol (Fig. S16), 5% mol (Fig. S17), 7.5% mol (Fig. S18), and 10% mol (Fig. S19)
DDM.

S4.6 DOPG/cholesterol

Figures S20 to S21 show SAXS patterns for systems doped with 1% mol DOPG
and 9% cholesterol (Fig. S20), and 3% mol DOPG and 7% cholesterol (Fig. S21).
We note that the peaks in these systems are significantly broadend in compari-
son to other systems measured in this work, which is due to increased thermal
fluctuations at large mesophase parameters. Therefore for clarity, we have indi-
cated in Fig. S21 how the peaks were indexed during mesophase assignment.

S4.7 DOPG

Figures S22 to S24 show SAXS patterns for systems doped with 1% mol DOPG
(Fig. S22), 3% mol DOPG (Fig. S23), and 5% mol DOPG (Fig. S24).
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Figure S3: SAXS patterns for a pure MO system hydrated with a solvent of
butanediol and water. The patterns are ordered with increasing butanediol
solvent content from bottom to top.
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Figure S4: SAXS patterns for systems doped with 2.5% mol cholesterol. The
patterns are ordered with increasing butanediol solvent content from bottom to
top.
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Figure S5: SAXS patterns for systems doped with 5% mol cholesterol. The
patterns are ordered with increasing butanediol solvent content from bottom to
top.
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Figure S6: SAXS patterns for systems doped with 7.5% mol cholesterol. The
patterns are ordered with increasing butanediol solvent content from bottom to
top.
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Figure S7: SAXS patterns for systems doped with 10% mol cholesterol. The
patterns are ordered with increasing butanediol solvent content from bottom to
top.
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Figure S8: SAXS patterns for systems doped with 2.5% mol DOPE. The pat-
terns are ordered with increasing butanediol solvent content from bottom to
top.
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Figure S9: SAXS patterns for systems doped with 5% mol DOPE. The patterns
are ordered with increasing butanediol solvent content from bottom to top.
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Figure S10: SAXS patterns for systems doped with 7.5% mol DOPE. The pat-
terns are ordered with increasing butanediol solvent content from bottom to
top.
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Figure S11: SAXS patterns for systems doped with 10% mol DOPE. The pat-
terns are ordered with increasing butanediol solvent content from bottom to
top.
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Figure S12: SAXS patterns for systems doped with 2.5% mol DOPC. The pat-
terns are ordered with increasing butanediol solvent content from bottom to
top.
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Figure S13: SAXS patterns for systems doped with 5% mol DOPC. The patterns
are ordered with increasing butanediol solvent content from bottom to top.
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Figure S14: SAXS patterns for systems doped with 7.5% mol DOPC. The pat-
terns are ordered with increasing butanediol solvent content from bottom to
top.
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Figure S15: SAXS patterns for systems doped with 10% mol DOPC. The pat-
terns are ordered with increasing butanediol solvent content from bottom to
top.
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Figure S16: SAXS patterns for systems doped with 2.5% mol DDM. The pat-
terns are ordered with increasing butanediol solvent content from bottom to
top.

18



Figure S17: SAXS patterns for systems doped with 5% mol DDM. The patterns
are ordered with increasing butanediol solvent content from bottom to top.
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Figure S18: SAXS patterns for systems doped with 7.5% mol DDM. The pat-
terns are ordered with increasing butanediol solvent content from bottom to
top.
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Figure S19: SAXS patterns for systems doped with 10% mol DDM. The patterns
are ordered with increasing butanediol solvent content from bottom to top.
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Figure S20: SAXS patterns for systems doped with 1% mol DOPG, 9% mol
cholesterol, and 90% mol MO.
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Figure S21: SAXS patterns for systems doped with 3% mol DOPG, 7% mol
cholesterol, and 90% mol MO.
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Figure S22: SAXS patterns for systems doped with 1% mol DOPG, and 99%
mol MO.
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Figure S23: SAXS patterns for systems doped with 3% mol DOPG, and 97%
mol MO.
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Figure S24: SAXS patterns for systems doped with 5% mol DOPG, and 95%
mol MO.
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