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S1 The finite element model 

We use commercial finite element package, Abaqus, to simulate the coupled finite deformation 

and acetone diffusion. For convenience, the balance equations for the coupled problem are again 

shown as following 

 (S1) 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚:    ∇ ∙ 𝑃 + 𝑏 = 0

and 

 (S2)
𝐵𝑎𝑙𝑎𝑛𝑐𝑒 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛:     

∂𝐶
∂𝑡

= 𝐷(∂2𝐶

∂𝑥2
+

∂2𝐶

∂𝑦2
+

∂2𝐶

∂𝑧2)
The variables in Eqs. (S1) and (S2) are the same as those in the main contexts. 

Since the module for direct dealing with Eq. (S1) seems not available in Abaqus, and we 

make an analog between the governing equations for fluid diffusion and heat transfer, so that we can 
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utilize the structural-thermal coupling module to simulate this problem. The balance equation for 

transient heat transfer is given by 

 (S3)
 
∂𝑇
∂𝑡

=
𝑘

𝜌𝑐𝜌
(∂2𝑇

∂𝑥2
+

∂2𝑇

∂𝑦2
+

∂2𝑇

∂𝑧2)
where  is the temperature,  is the coefficient of heat conduction and  is the heat capacity. 𝑇 𝑘 𝑐𝜌

Comparing Eqs. (S2) and (S3), we obtain analogous relations 

 and  (S4) 𝐶~𝛼𝑇
𝐷~

𝑘
𝜌𝑐𝜌

where  is the coefficient of thermal expansion. In the simulation, we assume that  (or ) 𝛼 𝑇 = 0 𝐶 = 0

represents the initial non-swelling state and  (or ) the final fully swelling state. As stated 𝑇 = 1 𝐶 = 𝛼

earlier, the acetone diffusion in the polymer network causes swelling of the bulk material, which is 

equivalent to applying volumetric expansion strain  to the material. Thus, we may obtain the 𝜀𝑣

relation, 

 (S5) 𝜀𝑣~𝛼Δ𝑇~Δ𝐶

where  is the temperature change. In this way, we realize the coupling between the finite Δ𝑇

deformation and the fluid diffusion. 

We use an incompressible Mooney-Rivlin model to characterize the elastic deformation of the 

material, where the strain energy function is given by 

 (S6)𝑊 = 𝐶10(𝐼1 ‒ 3) + 𝐶01(𝐼2 ‒ 3) + 𝑝(𝐽 ‒ 1) 

where , , ,  is the right Cauchy-Green tensor,  is the 𝐼1 = 𝑡𝑟𝐶 𝐼2 =
1
2

[(𝑡𝑟𝐶)2 ‒ 𝑡𝑟(𝐶 ∙ 𝐶)]
𝐽 = det 𝐹 𝐶 = 𝐹𝑇𝐹 𝐹

deformation gradient,  is a Lagrange multiplier enforcing the incompressibility condition, i.e., , 𝑝 𝐽 = 1

and  and  are constant constitutive parameters. We will introduce the calibration of the material 𝐶10 𝐶01

parameters in the next section. The boundary conditions of the finite element model are detailed in 

Figure S1. The element type used for simulation is C3D8R and the finite element mesh is fine enough 

to obtain converged results. 
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Figure S1 The sketch for the fluoroelastomer film placed on an acetone-soaked filter paper. The 
location of three interfaces S1, S2 and S3 are highlighted, which are essential to capture the coupled 
large deformation and diffusion process. The rigid displacements of the film are constrained by fixing 
symmetric degrees of freedom (DOFs) at the symmetric axis of the film. At SF1, all the displacement 
degrees of freedom (DOFs) are fixed to be zero. At SF2, a convective boundary condition (Thermal 
conductance interaction in Abaqus) is applied for acetone diffusion from the filter paper to the film, 
which satisfies , where  denotes the acetone concentration in the filter 𝑞(𝑡) = ℎ(𝑑)(𝑇(0,𝑡) ‒ 𝑇0) 𝑇0 = 1

paper,  and with  and  (see more details in Section 
ℎ(𝑑) = { ℎ0(𝑑0 ‒ 𝑑), 𝑓𝑜𝑟 𝑑 < 𝑑0

0,                    𝑓𝑜𝑟 𝑑 ≥ 𝑑0 � ℎ0 = 0.8 × 10 ‒ 3 𝑑0 = 2 𝑚𝑚

S2). Mechancial surface to surface contact is applied at SF2. At SF3, a convective conduction 
(Surface film condition in Abaqus) is applied, despite its negligible effect, to describe the acetone 
evaparation from the film to external environment, which is given by  with 𝑞(𝑡) = ℎ𝑒(𝑇(𝐻, 𝑡) ‒ 𝑇𝑒)

 and  𝑇𝑒 = 0 ℎ𝑒 = 1 × 10 ‒ 7.

S2 Identification of the material parameters 

We conduct uniaxial tension experiment of rectangle strips to determine the material parameters 

 and  in Eq. (S6). In the case for uniaxial tension, the deformation gradient is given by 𝐶10 𝐶01

, and thus  and . The corresponding tensional (nominal) stress 
𝐹 = 𝑑𝑖𝑎𝑔(𝜆,

1
𝜆

, 
1
𝜆) 𝐼1 =  𝜆2 +

2
𝜆

𝐼2 =
1

𝜆2
+ 2𝜆

is given by 

 (S7)
𝑃11 = 2𝐶10(𝜆 ‒

1

𝜆2) + 2𝐶01(1 ‒
1

𝜆3) 
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The parameters,  and , are obtained by numerical fitting between the expression in Eq. (S7) and 𝐶10 𝐶01

the experimental stress-stretch data (Figure S2). Three groups of data for rectangle samples with the 

same dimensions are used. We find that the results for the constitutive equation (S7) with 

 and  agree well with experimental results (Figure S2). The Young’s modulus at 𝐶10 = 0.005 𝐶01 = 0.17

the ground state is given by . 
𝐸 = �∂𝑃11

∂𝜆 |𝜆 = 1 = 6(𝐶10 + 𝐶01) = 1.05 𝑀𝑃𝑎

Figure S2 Comparison of the stress-stretch relations between experiment, theory and finite element 
model. The experiment data were obtained by stretching three strip samples with the size of 

, where ,  and  are the length, width and thickness of the strip. 𝐿 × 𝑊 × 𝐻~80 𝑚𝑚 × 5 𝑚𝑚 × 1.4 𝑚𝑚 𝐿 𝑊 𝐻

To identify the diffusion coefficient , we first set , which does not change the 
𝐷~

𝑘
𝜌𝑐𝜌 𝜌𝑐𝜌 = 1

essential properties of solution and thus problem comes down to identifying . We introduce a 𝑘

simplified one-dimensional diffusion problem in the thickness direction ( -direction, Figure S3), 𝑧

based on Eq. (S2) and  ( ), 
𝐷~

𝑘
𝜌𝑐𝜌

~𝑘
𝜌𝑐𝜌 = 1

 (S8)
∂𝑇(𝑧,𝑡)

∂𝑡
= 𝑘

∂2𝑇(𝑧,𝑡)

∂𝑧2
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with the boundary condition  at the bottom side (Figure S3), and initial condition 𝑞(𝑡) = ℎ0(𝑇(0,𝑡) ‒ 𝑇0)

, where  is a conduction coefficient measuring the intensity of heat conduction (fluid 𝑇(𝑧,0) = 0 ℎ0

permeation) when the filter paper and the film contact perfectly, and  representing the fully 𝑇0 = 1

swollen state. As , we expect that  and . 𝑡→∞ 𝑇(0,∞)→𝑇0 = 1 𝑞(∞) = 0

Figure S3 Sketch of the one-dimensional fluid diffusion (heat conduction) across the thickness 
direction of the film. 

The solution to Eq. (S8) is given by 

 (S9)𝑇 = 𝑒𝑟𝑓𝑐 𝜁 ‒ exp [𝛽(2𝜁 + 𝛽)]𝑒𝑟𝑓𝑐 (𝜁 + 𝛽) 

where , , ,  and . By setting specific value 
𝜁 =

𝑦
2 𝛼𝑡 𝛽 = ℎ 𝛼𝑡/𝑘 𝛼 = 𝑘 𝑒𝑟𝑓𝑐 𝑥 = 1 ‒ 𝑒𝑟𝑓 𝑥

𝑒𝑟𝑓 𝑥 =
2
𝜋

𝑥

∫
0

𝑒 ‒ 𝜃2
𝑑𝜃

for the material parameters  and , we can obtain distribution of  as a function of  and  (or , see 𝑘 ℎ 𝑇 𝑧 𝑡 𝐶

Figure S4a for the case  and ), from which we can extract the distance of 𝑘 = 1.5 × 10 ‒ 4 ℎ0 = 0.8 × 10 ‒ 3

the diffusion front to the bottom side, i.e.,  in Figure S3. The value of  can be readily measured by 𝛿 𝛿

observing the diffusion process of acetone inside a film and thus can be used to fit the parameters  𝑘

and  (Figure S4b). We find that the parameters  and  fits the experiment ℎ0 𝑘 = 1.6 × 10 ‒ 4 ℎ0 = 0.8 × 10 ‒ 3

data very well and the diffusion velocity increases with the diffusion coefficient  as expected (Figure 𝑘

S4b). The expansion coefficient  is determined by the maximum swelling ratio of fluoroelastomer, 𝛼

which is  (due to ). All the material parameters are summarized in Table 𝛼𝑇𝑚𝑎𝑥 = 𝛼 = 1.02 𝑇𝑚𝑎𝑥 = 𝑇0 = 1

1. 

5



Figure S4 (a) Variation of  or  as a function of location and time for  and 𝐶 𝑇 𝑘 = 1.5 × 10 ‒ 4

. (b) Comparison between the analytical expression with varying  and  ℎ = 0.8 × 10 ‒ 3 𝑘 ℎ = 0.8 × 10 ‒ 3

and experimental data. 

Table 1 The constitutive parameters used for finite element simulation of transient swelling of the 
fluoroelastomer film. 

Parameters  (MPa)𝐶10  (MPa)𝐶01  (Kg/m3)𝜌 𝑐𝜌 = 1/𝜌  ( )𝑘 𝐽 ∙ 𝑚/𝐾 𝛼  ℎ0 (𝐽/𝐾)

Values 0.005 0.17 1.8 × 103 0.556 × 10 ‒ 3 1.6 × 10 ‒ 4 1.02 0.8 × 10 ‒ 3

S3 Supplementary results

To validate the analytical curvature expression in Eq. (15), For this purpose, we consider a bilayer 

with the following parameters , , , 𝐿 = 20 𝑚𝑚 𝑊 = 10 𝑚𝑚 𝐻 = 2𝐻𝑎 = 2𝐻𝑝 = 0.2 𝑚𝑚

, , . Consequently, Equation (15) simplifies to 𝜌𝑎 = 𝜌𝑝 = 1.8 × 103 𝐾𝑔/𝑚3 𝐸𝑎 = 𝐸𝑝 = 1.0 × 106 𝑃𝑎 𝜈 = 0.3

 (S10)𝜅𝐻 = 1.95𝛼 ‒ 0.004 

If no gravity is counted and the bilayer bends along the long side, the curvature becomes , 𝜅𝐻 = 1.95𝛼

which exhibits good agree with the numerical results (Figure S5a). However, when the gravity effect 

is taken into account with the bilayer bending along the short side, the numerical results is slightly 

lower than the expression in Eq. (S10) (Figure S5b). This disparity arises from our assumption that 

the bilayer bends into a cylindrical shape, which is not the case when the bilayer is in the initial state 

under gravity. To rectify this, we introduce the deflection w based on the beam theory in small 

deformation. (for short-side bending along the  direction, Fig. 2) 𝑦
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 (S11)
𝑤 =‒

𝜌𝑔𝐻𝑦2

24𝐸𝐼 (3
2

𝑊2 ‒ 2𝑊𝑦 + 𝑦2), 𝑦 ∈ [0, 𝑊/2] 

where . It can be obtained that the curvature of the curve  at  is given by 𝐼 = 𝐻3/12 𝑤 𝑦 = 0

. If the modified value  is used in Eq. (S10), the analytical (𝜅𝐻)𝑏𝑒𝑎𝑚 = 𝑤''(𝑦 = 0) =‒ 0.0132 ‒ 0.0132

results show better agreement with the numerical results (Figure S5b). For sake of theoretical solution 

(e.g., derivation of Eq. (19)), we use the curvature expressions in Eqs. (11) and (15), which maintains 

the intrinsic deformation features of the bilayer. The curvature is calculated by the least square 

method using the coordinates of twelve points (marked in Figure S5c) near the origin (0,0,0).

Figure S5 Validation of the analytical results obtained by the bilayer model. (a) Comparison of the 
curvature without the gravity effect. (b) Comparison of the curvature with the gravity effect. (c) 
Deformed shape of the line in the bending direction for  and . 𝛼 = 0, 0.02, 0.04, 0.06, 0.08 0.1

Using the finite element mode and calibrated parameters, we simulate the bending process of the 

film for multiple groups of geometrical parameters ,  and . Figure S6a and b show temporal 𝐿 𝑊 𝐻

variation of the distance between the middle points at the opposite sides for samples with 

 and , respectively. The simulation results agree well with the measured data and 𝐻 = 900 𝜇𝑚 1255 𝜇𝑚

the bending configurations (Figure S6), which indicates the accuracy of the finite element model. 

Figure S7 shows the simulation results for the bilayers and the fluoroelastomer film with and 

without applying the gravity in the finite element model. The gravity shows profound influence on 

the bending direction of the film. In both cases, the structure bends along the long side without gravity 

and along the short side with gravity. The fluoroelastomer film shows large swelling degree (as well 

as the bending curvature) in the middle region with continuous contact with the acetone-soaked filter 
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paper during deformation (Figure S7b), while the bilayer deforms into a cylinder (Figure S7a) with 

nearly uniform curvature due to uniform swelling strain applied at the bottom layer. 

Figure S6 Temporal variation of middle point distance along the short and long sides of rectangle 
films for different thicknesses (a)  and (b) . The size of the film is 40 mm  𝐻 = 900 𝜇𝑚 𝐻 = 1255 𝜇𝑚 ×
10 mm. (c) and (d) Comparison of the bending configuration at 1 min between the finite element and 
experimental results. The contour shows the distribution of the Von Mises stress. 
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Figure S7 (a) Bending modes of a bilayer with and without the gravity effect. The model assumptions 
and the finite element settings are addressed in Section 2 of the main text. The top and bottom layer 
are colored by red and blue, respectively. (b) Bending modes of the fluoroelastomer film with and 
without the gravity effect. The contour denotes the acetone concentration or swelling strain. The sizes 
for all the cases are . 𝐿 × 𝑊 × 𝐻 = 20 × 5 × 0.2 𝑚𝑚3

Figure S8 (a) Phase diagram for size-depndent bending modes for . (b) Some 𝐻 = 900 𝜇𝑚
representative configurations with varying , 10, 5, 1 mm and , . 𝑊 = 20 𝐿 = 40 𝑚𝑚 𝐻 = 900 𝜇𝑚
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Figure S9 Size-dependent bending of triangular films, which are of a fixed edge ratio  𝑙1:𝑙2:𝑙3 = 3:4:5

and varying overall sizes , 15 and 7.5 mm from the left to the right. (a) Comparison of 𝑙1 = 30

deformation between experiment and simulation, where the contour represents normalized deflection 
(displacement perpendicular to the film), . (b) and (c) top view of the displacement 𝑢3/max (𝑢3)

distribution in the undeformed configuration with and without gravity effect. The bending axes are 
determined by the location of minimum displacement and marked by red dash line. For small-sized 
films (e.g.,  mm), the bending axis is not affected by gravity, while for large-sized film (𝑙1 = 7.5

 mm), we observe obvious rotation of the bending axis.  𝑙1 = 30
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