Electronic Supplementary Information for:

3D printable, thermo-responsive, self-healing, graphene oxide

containing self-assembled hydrogels formed from block copolymer

wormlike micelles.

Qi Yue,^{*a,b*} Zhidong Luo, ^{*a,b*} Xueyuan Li, ^{*a,b*} and Lee A. Fielding^{**a,b*}

a. Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.

b. Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK. * Corresponding author: <u>lee.fielding@manchester.ac.uk</u>

Additional experimental materials and methods

Materials

Glycerol monomethacrylate (GMA) was kindly donated from GEO Specialty Chemicals (U.K.), 4-Cyano-4-(2-phenylethane sulfanylthiocarbonyl) sulfanylpentanoic acid (PETTC) was prepared in-house using previously published methods.^{1, 2}

Synthesis of poly (glycerol monomethacrylate) (PGMA) via RAFT solution polymerisation

PGMA was synthesised by RAFT polymerisation in ethanol at 70 °C and has been widely reported in the literature (Figure S1).³ GMA monomer (20 g, 124 mmol) and PETTC RAFT agent (0.8476 g, 2.5 mmol) were weighed into a 250 mL round-bottomed flask and purged with N₂ for 30 min. 4,4-azobis(4-cyanovaleric acid) (ACVA) initiator (0.14 g, 0.5 mmol, PETTC/ACVA molar ratio = 5:0) and anhydrous ethanol (20 g, previously purged with N₂ for 20 min) were then added, and the resulting yellow solution was degassed for a further 15 min while stirring to form a homogeneous solution. The flask was subsequently sealed and immersed in an oil bath set at 70 °C.³ After 120 min, the polymerisation was quenched by immersion in an ice bath and opening to air. The final degree of polymerisation (DP) was 58, as determined by ¹H-NMR analysis (Figure S2) using D₂O. The polymer was purified by dialysis (MWCO = 3500 g mol⁻¹) against deionised water and freeze-dried to form a yellow powder. DMF GPC analysis indicated an M_n of 4700 g mol⁻¹ and an M_w/M_n of 1.17 (Figure S3).

Preparation of PGMA-PHPMA-x% GO nanocomposite worm gels by physical mixing

The 20 % w/w G_{58} - H_{170} copolymer worm gel and the GO dispersion (~15 mg ml⁻¹) were cooled to approximately 5 °C until the copolymer dispersion was in a free-flowing state. Appropriate quantities of the pre-cooled GO dispersion and/or deionised water were added to the cooled copolymer dispersion. The samples were mixed gently for 10 s in cooled water using a vortex mixer and subsequently allowed to return to room temperature (Figure S6).

¹H NMR spectroscopy. ¹H NMR spectra were recorded on a Bruker Avance III 400MHz spectrometer with 128 scans averaged per spectrum at 25 °C.

Gel permeation chromatography (GPC). 0.50 % w/w polymer solution was prepared in DMF containing DMSO (10 μ L mL⁻¹) as a flow-rate marker. GPC measurements were conducted using HPLC-grade DMF eluent containing 10

mM LiBr at 60 °C at a flow rate of 1.0 mL min⁻¹. An Agilent Technologies 1260 Infinity GPC / SEC system fitted with two Polymer Laboratories PL gel 5 μ m Mixed C columns connected in series, and a refractive index detector was used to assess molar mass distributions using polystyrene calibration standards.

Dynamic light scattering (DLS). A Malvern Zetasizer Nano ZS instrument was used to measure particle size. The instrument is equipped with a He–Ne solid-state laser operating at 633 nm and detects back-scattered light at a scattering angle of 173°. All size measurement data were averaged over three consecutive runs comprising thirteen measurements each.

Atomic force microscopy (AFM). The GO dispersion was diluted to 0.1 % w/w and then 100 μ L diluted GO dispersion were then spin coated on a newly cleaved mica sheet at 1500 rpm for 30 seconds. AFM imaging was performed on a Bruker Multimode 8 (Burker, USA). The dispersion were scanned in room temperature in ScanAsyst (tapping) mode, using a ScanAsyst-Air probe with 70 Hz frequency and nominal spring content k, of 0.4 N m⁻¹. AFM images were acquired at 512*512 pixels resolution over scanning ranging from 2*2 to 10*10 μ m. At a scan frequency of 1 Hz and analysed with Gwyddion software.

Raman spectroscopy. Raman spectroscopy was been performed using a Horiba Scientific LabRAM HR Evolution instrument using a He-Ne laser (wavelength 633 nm) with an edge filter, and a grid of 600 gr/mm. Samples were cast and flattened on cleaned glass slides, and a 50x long working distance objective was used to focus the laser on the samples with a laser power of 0.29 mW.

Supporting data tables

Entry	Composition of GO containing	G' of LVR	CGT ^b		G' after	Recovery
	composite worm gel	(kPa) ª	Cooling	Heatin	temperature	efficiency
			(°C)	g	change cycle	(%) ^c
				(°C)	(kPa)	
1	15% PGMA-PHPMA-2% GO	3.1 ± 0.6	6	9	2.8 ± 0.8	80.2
2	15% PGMA-PHPMA-4% GO	6.1 ± 0.3	4	7	4.6 ± 1.3	87.6
3	15% PGMA-PHPMA-6% GO	3.5 ± 0.4	6	8	2.4 ± 1.4	83.2
4	20% PGMA-PHPMA-2% GO	7.3 ± 0.8	3	2	7.3 ± 0.6	92.5
5	20% PGMA-PHPMA-4% GO	20.5±1.9	N/A	2	20.5 ± 2.5	96.8
6	20% PGMA-PHPMA-6% GO	3.7 ± 0.4	2	5	3.4 ± 1.6	96.5
7	25% PGMA-PHPMA-2% GO	33.1±3.5	N/A	N/A	32.6 ± 5.4	98.1
8	25% PGMA-PHPMA-4% GO	11.6±2.0	N/A	N/A	15.3 ± 3.8	98.3
9	25% PGMA-PHPMA-6% GO	9.7±1.1	N/A	N/A	9.5 ± 2.2	97.5

 Table S1. Oscillatory rheology information of the GO containing composite worm gel.

^a LVR: Linear viscoelastic region

^b CGT: Critical gelation temperature

^c Recovery efficiency: Dividing the G' of the last low strain (0.2%) by the G' of the original low strain obtained by the rheology shear-thinning recovery test.

Entry	Composition of GO containing	Young's modulus	Fracture	Toughness /	Healing
	composite worm gel	/ КРа	strain / %	KJ/mm ³	efficiency
					(%) ^a
1	15% PGMA-PHPMA-2% GO	41.5±4.9	1.3±0.2	21.9±6.7	55.2
	After healing	30.3±8.4	1.1±0.4	12.1±2.2	
2	15% PGMA-PHPMA-4% GO	95.55±9.4	3.5±0.2	486.2±48.2	63.2
	After healing	75.9±14.5	3.1±0.6	307.3±22.4	
3	15% PGMA-PHPMA-6% GO	56.15±13.2	1.5±0.3	47.9±10.8	39.2
	After healing	35.5±17.5	1.2±0.7	18.8±4.9	
4	20% PGMA-PHPMA-2% GO	105.3±7.2	4.2±1.4	844.1±86.4	96.1
	After healing	93.7±12.4	4.2±1.1	811.5±96.7	
5	20% PGMA-PHPMA-4% GO	356.4±22.2	7.5±1.3	10760.5±205	97.7
	After healing	345.7±29.6	7.5±1.8	10510.3±279	
6	20% PGMA-PHPMA-6% GO	54.5±13.1	2.1±0.5	125.2±18.4	90.8
	After healing	48.7±15.2	2.1±0.5	113.7±19.1	
7	25% PGMA-PHPMA-2% GO	446.7±14.4	13.4±4.8	41956.2±304	106.9
	After healing	195.5±34.15	15.2±3.2	44861±254	
8	25% PGMA-PHPMA-4% GO	232.6±27.8	9.4±1.5	11855.9±460	123.3
	After healing	149.5±44.5	10.6±2.7	14614±601	
9	25% PGMA-PHPMA-6% GO	185.5±10.4	8.6±1.1	6990.4±371	122.8
	After healing	128.9±37.4	9.8±0.9	8585.5±268]

 Table S2. Tensile test information of the GO containing composite worm gel.

^a Healing efficiency: Dividing the toughness of healed samples by the toughness of the original samples.

Supporting Figures

Figure S1. Synthesis of PGMA_x macromolecular chain-transfer agent (macro-CTA) *via* RAFT solution polymerisation in ethanol at 70 °C.

Figure S2. Assigned NMR spectra of PGMA₅₈ macro-CTA in D_2O .

Figure S3. DMF GPC data recorded for PGMA₅₈ macro-CTA and PGMA₅₈-PHPMA₁₇₀. M_n and M_w/M_n values were determined using polystyrene calibration standards.

Figure S4. AFM images for (a) GO sheets after bath sonication; (b) GO sheets after probe sonication. (a) and (b) height profiles corresponding to the large GO sheets and small GO sheets respectively. Samples were diluted to 0.1 % w/w before being deposited at room temperature.

Figure S5. Dynamic light scattering studies for 0.1 % w/w GO dispersions after probe sonication. The GO flake equivalent diameter (Z-average) recorded at 25 °C after day 1, day 3, day 5 and day 8.

0.7% GO 1.5% GO 1.7% GO 2% GO 2.5% GO

Figure S6. Photograph taken at room temperature of 15% G_{58} - H_{170} -x% GO composite gels prepared *via* physical mixing copolymer with GO at low temperature.

Figure S7. Photographs taken at room temperature of (a) n% G_{58} - H_{170} -x% GO composite gels prepared *via* RAFT *in situ* polymerisation (a and c) shortly after preparation, (b and d) after 6 months storage at room temperature.

Figure S8. Angular frequency dependent storage modulus (G') and loss modulus (G") for (a) 15% w/w G-H-4% GO, (b) 20% w/w G-H-4% GO and (c) 25% w/w G-H-4% GO based on copolymer. Measurements were recorded between 0.01 and 10 Hz at 0.2 % strain and 25 $^{\circ}$ C.

Figure S9. Raman spectra of GO, GO-PGMA-PHPMA prepared by physical mixing and GO-PGMA-PHPMA prepared by *in situ* polymerisation.

Figure S10. (a) Assigned NMR spectra recorded in CD₃OD for samples extracted during in situ polymerisation for a PGMA₅₈-PHPMA₁₇₀ copolymer (sampling times 1h and 2h) and 15% G₅₈-H₁₇₀-4%GO, 20% G₅₈-H₁₇₀-4%GO and 25% G₅₈-H₁₇₀-2%GO nanocomposite gels (sampling times 1h and 3h). (b) HPMA monomer conversion as a function of time for these in situ RAFT polymerisations.

Figure S11. 15% w/w G-H-4% GO, 20% w/w G-H-4% GO and 25% w/w G-H-2% GO after self-healing adheres to various materials including glass, wood, plastic, metal and rubber.

Figure S12. Tensile testing data for (a) 15 % (b) 20% and (c) 25% w/w G_{58} - H_{170} copolymer worm gels (straight line: original and dashed line: after self-healing) at room temperature.

Figure S13. Rheology data for 15% G_{58} -H₁₇₀-2.0% GO composite gels prepared by low-temperature physical mixing of copolymer and GO. (a) Shearing-thinning recovery experiments. G' and G" were recorded continuously with alternating small ($\gamma = 0.2\%$) and large ($\gamma = 100\%$) strain at 25 °C with an angular frequency of 10 rad s⁻¹. (b) Temperature-dependent oscillatory rheology studies. The temperature was varied from 25 °C to 2 °C to 25 °C in 1 °C steps with 3 minutes equilibration at each step. (c) Temperature-dependent oscillatory rheology studies obtained for storage modulus (G'). The temperature was varied from 20 °C to 2 °C to 20 °C s with 2 h equilibration at each step. The final step with 12h equilibration at 20 °C. Measurements were conducted at an angular frequency of 10 rad s⁻¹ and applied strain amplitude of 1.0 %.

Figure S14. 3D printed international morse code (spelling 'LOVE') of 15 %, 20 % and 25 % w/w copolymer nanocomposite worm gels after printing (left) and showing information loss for the 15 % and 20 % gels after cooling for 2 h (right).

Figure S15. 3D printed QR codes using 15 % w/w G_{58} - H_{170} -4% GO; 20% w/w G_{58} - H_{170} -4% GO and 25% G_{58} - H_{170} -2% GO nanocomposite worm gels. Top row: images of QR codes after being held at 2 °C for 30 min. Bottom row: images of QR codes being held at 2 °C for 60 min.

Figure S16. Digital photographs showing tensile testing sample preparation: (a) gel cast onto PTFE tape set into a silicone mould; (b) gel transferred to testing card; (c) after gel fracture; (d) fractured gel transferred to mould; (e) gel after being left at room temperature for 6 h; (f) healed gel transferred to testing card.

References

1. Semsarilar, M.; Ladmiral, V.; Blanazs, A.; Armes, S., Anionic polyelectrolyte-stabilized nanoparticles via RAFT aqueous dispersion polymerization. *Langmuir* **2012**, *28* (1), 914-922.

2. Wen, S.-P.; Saunders, J. G.; Fielding, L. A., Investigating the influence of solvent quality on RAFTmediated PISA of sulfonate-functional diblock copolymer nanoparticles. *Polymer Chemistry* **2020**, *11* (20), 3416-3426.

3. Warren, N. J.; Derry, M. J.; Mykhaylyk, O. O.; Lovett, J. R.; Ratcliffe, L. P.; Ladmiral, V.; Blanazs, A.; Fielding, L. A.; Armes, S. P., Critical dependence of molecular weight on thermoresponsive behavior of diblock copolymer worm gels in aqueous solution. *Macromolecules* **2018**, *51* (21), 8357-8371.