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DERIVATION OF Fmax
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Note, that we replaced ∆Q by Q for better readability.
Because of infinite integration boundaries the shift by Qc

does not affect the integrals value. Now we just need to
apply the formula
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where K is the modified Bessel function of the sec-
ond kind with its corresponding integral representa-
tion. For its derivation, we need the substitution v =√
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where only the logarithm has to be taken in order to
obtain Fmax.

NUMERICAL DETAILS OF FITTING

For having a quantitative measure of the fit quality
we introduce χ2 as the sum over the squared errors be-
tween actual data points and corresponding fitting value.
Let (tijk, Rijk) be the experimental data points (denoting
time and radius). The index i runs over the considered
pH-values 6.1 and 7.2, respectively, j over the initial fuel
concentrations used for pH i and k is just the kth point
in this set. In total, we have the sum

χ2 =
∑
ijk

(f (tijk)−Rijk)
2

(S5)

where f maps the time tijk to the radius R determined
by our equations in the quasistatic case.

The fits are executed using the python package lmfit
[1], which is based on scipy.optimize [2]. They use an
Levenberg–Marquardt algorithm [3, 4] in order to find
the MSD. Essentially, we define the function which cal-
culates the radii in dependency of time, initial fuel con-
centration and fitting parameters. By applying lmfit, it
takes this function as well as the experimental data and
then minimizes the MSD between experiment and model.

pH = 6.1 pH = 7.2

A
[
kBT nm−2

]
−2.20× 10−4 −1.18× 10−4

B
[
kBT nm−4

]
6.07× 10−9 1.75× 10−9

Qc [nm] 402 341

m
[
kBT lmmol−1nm−1

]
8.57× 10−2 0.156

k̃+
[
lmmol−1h−1

]
27.9 14.4

k−
[
h−1

]
2.07× 10−2 5.75× 10−2

psat
[
mmol l−1

]
0.799

p∗
[
mmol l−1

]
0.530 0.768

k+ = k̃+psat
[
h−1

]
22.3 11.5

Q1 = Qc −
√

−A/2B [nm] 267 157

Q2 = Qc +
√

−A/2B [nm] 537 525

TABLE SI: Fit values with pH-dependent parameters
for the energy landscape belonging to Fig. S1
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FIG. S1: Fit where the energy landscape parameters
(A,B,Qc) are not global but also pH-dependent,

corresponding values can be found in Tab. SI in this
ESI. By adjusting the energy landscape for each pH

value we better hit the plateau values; χ2 = 1.944 · 107

pH = 6.1 pH = 7.2

A
[
kBT nm−2

]
−3.87× 10−4

B
[
kBT nm−4

]
7.50× 10−9

Qc [nm] 391

m
[
kBT lmmol−1nm−1

]
4.72× 10−2 0.274

k̃+
[
lmmol−1h−1

]
25.6 14.4

k−
[
h−1

]
2.07× 10−2 5.61× 10−2

psat
[
mmol l−1

]
0.799

p∗
[
mmol l−1

]
0.545 0.761

k+ = k̃+psat
[
h−1

]
20.4 11.5

Q1 = Qc −
√

−A/2B [nm] 230

Q2 = Qc +
√

−A/2B [nm] 551

TABLE SII: Fitting values for an energy barrier of
5 kBT , see Fig. S6

ALTERNATIVE FITS

In this and the following sections, we show fits similar
to Fig. 3 in the main paper but with small variations.

pH-dependent energy landscape

In Fig. S1 we show a fit where the energy land-
scape parameters (A,B,Qc) are not global but also pH-
dependent, corresponding values can be found in Tab. SI
in this ESI.

Unimodal Hamiltonian of form Q2 and Q4

For B = 0 we have the reduced Hamiltonian

H(Q, t) = A(∆Q)2 +m · (p(t)− p∗) ∆Q (S6)

which has only one local minimum for A > 0. The mean
radius 〈R〉 is predominately determined by this minimum
at

H ′ = 2A (Q−Qc) +m (p− p∗) !
= 0

⇒ Qmin = Qc −
m (p− p∗)

2A

(S7)

because the small asymmetry by the linear term has no
significant effects. This means, that the mean radius de-
pends linearly on the concentration. Since the shape of
p (t) deviates from the experiments, we will never have
congruent fits.
Note that the position of the minimum does not change
when we multiply A and m with the same factor. Hence,
the fitting algorithms create energy landscapes leading
to overflows. This means, we have to fix one of these
values in order to carry out a fit. In our case, we fixed
A = 0.0001
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FIG. S2: Alternative fit with an unimodal potential
(values see Tab III). The model can’t replicate the fast

transitions from one state to the other so that it is
cheaper with respect to χ2 to use to high plateau

values; χ2 = 7.333 · 107

The same issues are observed for an unimodal Q4 form.

Unimodal Hamiltonian of form Q6

Compared to the quadratic Hamiltonian from eq. S6,
we can improve our fits by a higher order potential such
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pH = 6.1 pH = 7.2

A
[
kBT nm−2

]
1.00× 10−4

B
[
kBT nm−4

]
0.00

Qc [nm] 542

m
[
kBT lmmol−1nm−1

]
0.115 0.107

k̃+
[
lmmol−1h−1

]
23.2 30.1

k̃+psat
[
h−1

]
5.61 7.39

k−
[
h−1

]
2.46× 10−2 8.65× 10−2

psat
[
mmol l−1

]
0.768

p∗
[
mmol l−1

]
0.242 0.245

TABLE SIII: Fit values for the quadratic potential (see
Fig. S2). A = 0.0001 was fixed

as

H(Q, t) = A(∆Q)6 +m · (p(t)− p∗) ∆Q. (S8)

The resulting fits and its corresponding values can be
found in Fig. S3 and Tab. SIV, respectively. Measured by
χ2 the fits quality is still worse than the quartic form, but
the difference shrinks. However, this potential is very flat
as one can see in Fig. S4 leading to another problem. Now
the particles size distribution is very broad. Especially
in the symmetric case, we find a significant amount of
particles ranging from radii 200 nm up to 600 nm while
we see relatively sharp distributions in the experimental
data.
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FIG. S3: Same as Fig. S2 but with a Q6 potential
(values see Tab. SIV). Now the transitions are better

met, but the size distribution of the colloids is still not
satisfactory; χ2 = 2.4 · 107

Box potential

We also tested a completely different potential, namely
a box potential. Therefore, we introduce new parameters

pH = 6.1 pH = 7.2

A
[
kBT nm−2

]
0.00

B
[
kBT nm−4

]
6.09× 10−14

Qc [nm] 379

m
[
kBT lmmol−1nm−1

]
0.168 0.602

k̃+
[
lmmol−1h−1

]
28.2 11.1

k−
[
h−1

]
2.10× 10−2 6.17× 10−2

psat
[
mmol l−1

]
0.768

p∗
[
mmol l−1

]
0.558 0.721

k̃+psat
[
h−1

]
15.7 8.01

TABLE SIV: Fit values for the Q6 potential (see
Fig. S3)
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FIG. S4: Potential of the Q6 potential of Fig. S3.
Obviously the potential is extremely flat over a wide

span of radii leading to a broad size distribution

Qleft/right representing the endpoints of the box. Thus,
we obtain a Hamiltonian

H(Q, t) =

{
m · (p(t)− p∗)Q, Qleft ≤ Q ≤ Qright

∞, else
.

(S9)
The resulting fit shown in Fig. S5 is very close to the
bimodal one, but again we find some concerns regarding
the size distribution. When p > p∗ the minimum of the
distribution is at Qleft so that most of the colloids are
in this state. With 177 nm its value is already below the
value RH,z = 206 nm of the core-shell particles before
acidic cleavage which we assume as a lower boundary of
the microgels radii.

Fitting with other barrier height

In Fig. S6 we show a fit with a barrier height of 5 kBT
instead of 2 kBT , corresponding values can be found in
Tab. SII
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FIG. S5: Alternative fit with a box potential (values see
Tab V). In general we have a good fit quality, but the
size distribution of the colloids is questionable at some

point; χ2 = 2.2 · 107

pH = 6.1 pH = 7.2

Qleft [nm] 177

Qright [nm] 604

m
[
kBT lmmol−1nm−1

]
6.97× 10−2 0.286

k̃+
[
lmmol−1h−1

]
23.6 12.1

k−
[
h−1

]
2.03× 10−2 5.51× 10−2

psat
[
mmol l−1

]
0.822

p∗
[
mmol l−1

]
0.548 0.768

k̃+psat
[
h−1

]
12.9 9.32

TABLE SV: Fit values for a box potential (see Fig. S5).
Qleft/right are free fit parameters and represent the

boundaries if the box

ENTROPY PRODUCTION

Fig. S7 shows the time derivative of the entropy, i.e.,
the entropy production. Larger changes occur at the
transition points from swollen to collapsed an vice versa.
We see that during the first transition the absolute values
of dS are order of magnitudes larger in a short time span
when compared to the transition at later times. While
the colloids are collapsed the entropy production is al-
most vanishing.
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FIG. S6: Alternative fit with a barrier height of 5 kBT ,
corresponding values can be found in Tab. SII;

χ2 = 2.189 · 107
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FIG. S7: Time derivative of entropy shown in Fig. 6a of
the main paper.
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THERMODYNAMIC PLOTS WITH
LOGARITHMIC TIME-AXIS

100 101 102

t/h

0

1

2

3

4

5

6

En
er

gy
/k

BT
a)

U U(t = 0)
F F(t = 0)
TS TS(t = 0)

100 101 102

t/h

7.5
5.0
2.5
0.0
2.5
5.0
7.5

10.0
12.5

En
er

gy
/k

BT

b)

U U(t = 0)
U0 U(t = 0)
Uchem

FIG. S8: Same as Fig. 6 in the main manuscript but now
with logarithmic time-axes.The time-dependent energet-
ics of the first transition at short times can be better
viewed in this plot.

DEFINITION OF THE KRAMERS TIME

In Fig. S9 one can see a plot analogous to Fig. 7 of
the main paper but with an alternative definition of the
Kramers time

τKramers =
2π

βD
[H′′ (Qmax)H′′ (Qmin,right)]

1/2
eβ∆H

(S10)
taking into account the curvatures of the energy land-
scape at the maximum and the right minimum, respec-
tively. Because the positions of the minima depend on
time, we consistently use the values for the time where
the energy landscape is symmetric. Comparing both
timescales we see that they differ by less than a factor of
2 meaning that both are suitable for time scale estima-
tions. We chose the definition of the main paper because

of its properties in the limit of vanishing barriers. Then,
our definition equals the time needed for pure diffusion
from the minimum to the barrier.
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FIG. S9: Same as Fig. 7 in the main paper but the
Kramers time is defined according to eq. (S10).
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