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In this document We provide further information about the measurement of the fiber dimensions
and density Matching of Nylon Fibers to the Suspending Medium. Moreover, we include details
about the numerical method, used in these simulations.

Measurement of Average Fiber Dimensions
Suspensions containing 10 v% of small (nominal length = 0.6 mm, nominal diameter = 49.8 µm) or large (nominal

length = 1.0 mm, nominal diameter = 49.8 µm) were prepared in the density-matched suspending medium (54 v%
glycerol, 46 v% deionized water) as described in the Experimental Section. Suspended fibers were imaged at 4X
magnification using an Olympus BX41 microscope. The lengths, diameters, and aspect ratios of 50 fibers per type
were obtained using ImageJ. The fiber distributions are shown in Figure S1.

Density Matching of Nylon Fibers to the Suspending Medium
Glycerol/water mixtures containing 52-56 v% glycerol were prepared in scintillation vials in 5 mL quantities via

magnetic stirring at room temperature. Next, 0.05 g of large nylon fibers (nominal length = 1.0 mm, nominal diameter
= 49.8 µm) were added to each vial and allowed to mix for 30 min, after which the suspensions were allowed to rest
overnight at room temperature to observe whether the nylon fibers remained suspended. An image of the nylon fiber
suspensions obtained the next day (Figure S2) reveals that a 54 v% glycerol, 46 v% water mixture is density-matched
to the nylon fibers. At lower glycerol contents (52-53 v% glycerol), the fibers are denser than the suspending medium
and sink to the bottom of the vial. At higher glycerol contents (55-56 v% glycerol), the fibers are less dense than the
suspending medium and float at the top of the vial.

Numerical method
The fluid-solid coupling is achieved using the Immersed Boundary Method (IBM) [1]. In the IBM, the geometry

of the object is represented by a volume force distribution f that mimics the effect of the object on the fluid. In this
method, two sets of grid points are needed: a fixed Eulerian grid x for the fluid and a moving Lagrangian grid X for
the flowing deformable structure as shown in figure S3. Each fiber has its own Lagrangian coordinate system.

In this study we assume the fibers to be neutrally buoyant, so equation of motion of fiber is
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where the LHS term is the acceleration of the fiber, and the RHS consists of the acceleration of the fluid particle
at the fiber location and the different forces acting on the fibers. Here, s is the curvi-linear coordinate along the
fiber, X = (x(s, t), y(s, t), z(s, t)) is the position of the Lagrangian points on the fiber axis, T is the tension, B is the
bending rigidity, F is the fluid-solid interaction force, Ff is the net inter-fiber interaction.

To solve for the fiber position in equation 1, we first solve the Poisson’s equation for tension as:
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where Fa = ∂2Xfluid

∂t2 is the acceleration of the fluid particle at the fiber location and Fb = −B ∂4X
∂s4 is the bending

force. The effect of the moment exerted by the fluid on the freely suspended fibers also appears in equation 2 and has
been discussed elsewhere [2].

As the fibers are freely suspended in the fluid medium, we impose zero force, torque and tension at the free ends.

∂2X

∂s2
= 0,

∂3X

∂s3
= 0, and T = 0. (3)

At each time step, the fluid velocity is first interpolated onto the Lagrangian grid points using the smooth Dirac delta
function, δ [3]:

Uib =

∫
V

u(x, t)δ(X− x)dV , (4)
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FIG. S1: Fiber length (a), diameter (b), and aspect ratio (c) distributions for the small and large nylon fibers used
in this work.
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FIG. S2: Pictures of large nylon fibers suspended in glycerol/water mixtures containing varying v% glycerol and
allowed to rest overnight.

Eulerian Point, x
Lagrangian Point, X

FIG. S3: Schematic of the Eulerian and the Lagrangian grids. The blue dots denote the Lagrangian points through
which the position of the fibers are defined.

The fluid and solid equations are then coupled by the fluid-solid interaction force,

F =
U−Uib

∆t
, (5)

where Uib is the interpolated fluid velocity on the Lagrangian points defining the fibers, U is the velocity of the
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FIG. S4: A sketch of the roughness model, L and d are the length and diameter of the fiber, respectively, hr is the
roughness height, and δ = h− hr is the surface overlap. Contact occurs when δ ≤ 0. Dots along the axes of the

fibers indicate Lagrangian points.

Lagrangian points and ∆t is the time step. The Lagrangian force is then extrapolated onto the fluid grid by

f(x, t) =
π

4
r2p

∫
L

F(X, t)δ(X− x)ds. (6)

Here rp = d/l, is the slenderness ratio of the fiber, which is the inverse of its aspect ration defined as A = l/d.

Lubrication interactions
To accurately resolve the lubrication interactions between the fibers when the inter-fiber gap falls below a few grid-

sizes, we use the lubrication correction model of [4]. The lubrication force model is based on two infinite cylinders
for two different cases: the cylinders can be parallel or at an arbitrary angle. The first-order approximation of the
lubrication force for the non-parallel case was derived by [5] and is given as follow:
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h
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here h is the shortest distance between the cylinders, ḣ is the relative normal velocity between the closest points on
the fibers, and α is the contact angle. The first order approximation of the lubrication force per unit length between
parallel cylinders was derived by [6]:
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here a is the cylinder radius (a = d/2). Based on equations 7 and 8, the following approximation of the lubrication
force for two finite cylinders is [4]:

Fl = min
(
Fl

1/∆s,Fl
2

)
. (9)

The force for the non-parallel case is divided by the Lagrangian grid spacing ∆s to calculate the force per unit length.
The numerical method implemented to calculate the lubrication force is discussed in [2], and hence is not repeated
here. As the distance between the fibers becomes the order of the mesh size, hydrodynamic interactions are not well
resolved; to address this issue, we introduce a lubrication correction force [4]. When the shortest distance between
two Lagrangian points becomes lower than d/4, we introduce lubrication correction force as: Flc = Fl − Fl

0, where
F l
0 is the lubrication force at a d/4 distance.
The lubrication forces diverge as the minimum inter-fiber separation decreases, and theoretically should prevent the

fibers from coming into direct contacts. However, the thin lubrication film between close fibers can break because of
the presence of irregularities on their surfaces leading to a direct contact between the fibers and hence, contact forces.
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Stress and bulk rheology calculations
The bulk stress in the suspension is required to quantify the rheological properties of the suspension. The total

stress in the suspension in terms of contributions from hydrodynamics and fiber stresses in the dimensionless form is
[7]:
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Here, V is the total volume, Vf is the volume occupied by each fiber, eij =
∂ui

∂xj
+

∂uj

∂xi
represents the strain rate tensor,

and u′ is the velocity fluctuation. σij is the fiber stress [8]. The dimensionless total stress consists of the fluid bulk
stress and the stress generated by the presence of fibers and the interactions between them. So, the total stress (Σij)
can be written as
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Here, Σ0
ij is the viscous fluid stress and results in a dimensionless contribution of 1 (or ηγ̇ in the dimensional form) in

a simple shear flow after subtracting the isotropic fluid pressure. Σf
ij is the stress generated by the presence of fibers

and inter-fiber interactions. The fiber stress σij can be decomposed into two parts:∫
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where Af represents the surface area of each fiber and n is the unit surface normal vector on the fiber pointing
outwards. The first term is called the stresslet, and the second term indicates the acceleration stress [9]. The second
term is identically zero for neutrally buoyant fibers when the relative acceleration of the fiber and fluid is zero. σiknk

is simply the force per unit area acting on the fibers [8]. Hence, for slender bodies, σiknk can be rewritten as:

∫
Af

σikxjnkdA = −r2p

∫
L

Fixjds, (14)

Fi is the fluid solid interaction force as defined in equation 5. The term r2p arises from choosing the linear density
instead of the volume density in the characteristic force scale. Finally, the total fiber stress is defined as:
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From the results of our simulations, we observe that, the last term related to the velocity fluctuations are very small
compared to the stresslet and can be neglected for the range of Reynolds number considered here. The calculated
bulk stress tensor can now be used to quantify rheological properties of the suspensions.

There are three main contributions to the bulk stress: 1) the hydrodynamic contribution Σh
ij , 2) the contact con-

tribution Σc
ij , and 3) the non-contact contribution Σnc

ij . The contact and non-contact contributions can be calculated
from the ensemble average of the contact and non-contact stresslets respectively given by:
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Thus, the hydrodynamic contribution can be simply obtained as Σh
ij = Σij − Σc

ij − Σnc
ij . This splitting of the total

stress allows us to track the variations in the contributions from different mechanisms to the observed rheological
behavior of the suspension with varying parameters, e.g., ηhr = Σh

xy, η
c
r = Σc

xy, and ηncr = Σnc
xy are the hydrodynamic,

the contact and non-contact contributions to the relative viscosity ηr, respectively.
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