Electronic Supplementary Information (ESI) for:

Janus magnetoelastic membrane swimmers

Yao Xiong,¹ Hang Yuan² and Monica Olvera de la Cruz^{1,3,4,5}

¹ Center for Computation & Theory of Soft Materials, Northwestern University, Evanston, IL, 60208, USA

² Applied Physics Graduate Program, Northwestern University, Evanston, IL, 60208, USA

³ Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA

⁴ Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA

⁵ Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA

Fig. S1 Time evolutions of (A) the asphericity b, (B) the volume V, and (C) the displacement in *y*-direction. The sample S1~S3 are the same as marked in Fig. 4A.

Fig. S2 The averaged forward, backward, and net displacements of one period for samples of microscopic bending rigidity (A) $\tilde{\kappa}_A = 10 \epsilon$, (B) $\tilde{\kappa}_A = 50 \epsilon$, and (C) $\tilde{\kappa}_A = 90 \epsilon$. The samples are the same as shown in Fig. 4A. As schemed in Fig. S1C, a forward displacement, X_f , is defined as the maximum displacement during the first half of the period, and a backward displacement, X_b , is computed as the difference of the net displacement X_n with X_f .

Bond strength, $k_A l_0^2 / 10^2 k_B T$ **Fig. S3** Effects of bond strength k_A on the propelling velocity for samples of microscopic bending rigidity (A) $\tilde{\kappa}_A = 10 \epsilon$, (B) $\tilde{\kappa}_A = 50 \epsilon$, and (C) $\tilde{\kappa}_A = 90 \epsilon$. The samples are the same as shown in Fig. 4A.