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S.1 Outline of the SCF calculations

In this section, we briefly outline our Self-Consistent-Field (SCF) calculation and its 
implementation, based on the scheme of Scheutjens and Fleer,1, 2 as used in the present work 
here.  A more detailed and extensive account of the theory can be found in many excellent 
books, articles and reviews,3-8 , as well as several of our own previous publications.9, 10 

A prerequisite to performing SCF calculations is the derivation of a free energy functional. 
This provides the free energy of the system for any given variation of the density profiles of 
various monomer species belonging to chains, solvent, and other molecules (e.g. ions) present 
in the solution. This task is not a trivial one, though it is now quite well established.6, 11, 12  It 
involves a statistical mechanics averaging of the position of all the monomers on the chains 
that lead to a given set of density profile variations , where is the density of { ( )}k r ( )k r

monomers of kind belonging to chains of type k, at a location .  In essence, starting from r
a (Hamiltonian) function which specifies the energy of the system for a given conformation 
of chains, one derives a coarse-grained functional , providing the free energy of  { ( )}kF r

the system for any desired set of density variations .  Since in this work we are { ( )}r
interested in the behaviour of chains in a gap between two approaching droplets, we initially 
only consider the region between two infinite parallel plates.  Additionally, as with any 
numerical scheme, it is necessary to discretise this space between the surfaces into a mesh or 
a suitable grid for the intended computation.  We do this by dividing the gap into a set of 
layers parallel to the plates, having each a thickness ao. Although ao can be chosen to have 
any suitable value, by taking this to be the nominal size of a monomer (e.g. length of a 
peptide bond ~ 0.3 nm here), a more physical interpretation to the model is provided based on 
the Flory-Huggins lattice model of polymer solutions.  The position  is now given in terms r
of the layer number, labelled i=1,2,3,…..L, extending from one plate to the other. The layers 
themselves are assumed to consist of lattice sites of size ao (see Fig. 1 in the main text for a 
schematic illustration).  All grid sites need to be filled either by monomers belonging to 
chains, solvent molecules or ions. Likewise, no lattice site can be doubly occupied.   This 
enforces the overall incompressibility of the solution, leading to
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where we have reserved the symbol  to represent the bulk value of outside the gap, far k
 k


away from the interfaces.  Note that with our definition and the particular choice of ao, the 
volume fraction of each type of monomer  coincides with the number density of that 
monomer within each layer.  

The free energy functional per unit area, when suitably discretised in the gap between the two 
planes, takes on the following form:   
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where free energy F is expressed with reference to a uniform solution where no interfaces are 
present.  In the above equation, T is the temperature, kB the Boltzmann constant, el(i) the 
electric potential in layer i, and q the charge of monomers of type .  The degree of 
polymerization of chains of type k is denoted as Nk, where this is equal to 1 for solvent 
molecules and ions in the solution.  The short-range interactions between two monomer 
species are characterised by a set of Flory-Huggins -parameters, {}.  A negative value of 
 indicates that the monomers belonging to groups  and  have a preference to be in 
contact with each other, while a positive value signifies an unfavourable interaction between 
the two.  Similarly, the strength of interactions between surface and monomers of kind  is 
denoted by s. Since a monomer residue can interact with other monomers within the same 
layer, as well as those in the two adjacent layers, we define a layer-averaged value for each

 .  This is calculated as ( )k i
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where -1 = 1 = 1/6 and 0 = 4/6, reflecting the possible number of neighbours in each layer 
(for our chosen cubic grid).  The longer-range electrostatic interaction between charged 
groups is represented by the fourth term in equation (S2), where the electric potential el 
itself depends on the spatial distribution of the charged monomers and ions, as governed in 
accordance to Poisson’s equation.  With el expressed in units of (kBT/e), length in units of 
(a0) and charge density in units of , Poisson equation, in its discretised form used in 3

0( / )e a
our calculations, reads: 
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where in equation (S4) is the Bjerum length in the solvent (assumed to  2
0/ 4B B rl e k T  

be water with a relative dielectric constant r=80). 

The mathematical process of averaging out the spatial positions of monomers, leading to the 
free energy functional in equation (S2), also introduces a set of auxiliary fields acting { ( )}i
on each type of monomer  (as well as solvent molecules, ions, etc.), within every layer i.  
The physical interpretation of these fields can roughly be understood as follows. For any 
chosen variation of the density profiles across the gap, these fields project out that , { ( )}k i



when they are applied to an equivalent system in which all internal interactions (including 
electrostatic ones) have been switched off.  Interestingly, one can prove that the set of density 
profiles  and their corresponding fields leading to smallest value of F(L) in { ( )}k i { ( )}i
equation (S2), satisfy the following relation:
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Since the minimisation has to be conducted with due consideration for the restriction imposed 
by the incompressibility condition, i.e. Eq. (S1), this introduces a set of so called Lagrange 
multipliers for each layer i, associated with the constraints. These can be seen appearing as 
h(i) in eq. (S5).  Again, a simple and somewhat more physical interpretation is to consider 
them as a hard-core interaction, equally applying to all monomers in a given layer 
irrespective of their type, enforcing the incompressibility requirement expressed in Eq. (S1).

As indicated in the methodology section in the main text, the focus of SCF calculation is to 
determine the dominant density profiles that satisfy Eq. (S5) and thus minimises the free 
energy of the system.  It was also outlined there, that this can be carried out using an iterative 
type procedure.  Equation (S5) allows one to calculate fields for a given set of { ( )}i
density profiles.  To be able to conduct the iterative process successfully, one needs to be able 
to do the reverse and calculate the density profiles resulting from a given set of fields. { ( )}k i
A very efficient and fast method for performing this is based on first computing a set of 
segment probability functions and .  These are proportional to the probability ( , )f

kG s i ( , )b
kG s i

that the first s monomer residues of a chain of type k will have a conformation such that the 
sth monomer resides in the layer i.  As protein fragments of interest in our study will generally 
have an asymmetric primary sequence, two such probabilities need to be defined, one for 
each end of the chain from which the s monomers are considered.  The two are distinguished 
from each other by the use of the backwards and forwards superscripts “f “ and “b” here.  
What makes the calculation of the segment probability functions simple is the connectivity of 
the chains.  This means that if the sth monomer is in layer i then (s-1)th residue must have been 
in one of the adjacent layers, i-1 or i+1, or is positioned in the same layer i.  This condition at 
once leads to the following recursive relation for the segment probability functions:
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for the forward, and
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for the backward segment probability.  In equation (S6), we have also defined two functions 
tf(s) and tb(s), which evaluate to the kind number to which the sth monomer (counting from 

the appropriate chain end) belongs.  Starting with  and ( )(1, ) exp ( )t sbb
kG i i   

, it is easy to see how through the use of the above recursive ( )(1, ) exp ( )t sff
kG i i   



relations, the full set of segment density functions for all s=1 to Nk for any chain of type k  
can quickly be computed.   With the full set of segment probability functions now available, 
the density profile for any type of monomer can be obtained using the composition law1, 3, 7
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where i,j is the Kronecker delta function, evaluating to 1 if i=j and 0 otherwise.

Starting from an initial rough guess for , the iterative process now substitutes the { ( )}k i
resulting fields from Eq. (S5) back into (S6) and (S7) to obtain an improved set of density 
profiles.  These are used then in (S5) to obtain a new set of and the process repeats.  { ( )}i
Convergence is obtained when the values no longer change (to within a desired tolerance 
error) from one step to the next.  The minimum value of the free energy can now be 
calculated from the computed and associated using Eq. (S2).  Finally, the { ( )}k i { ( )}i
interaction potential induced between the two interfaces, resulting from the presence of 
chains is obtained as 

(S8)( ) ( ) ( )plV L F L F   

where F (∞) is the value of the free energy when the two plane interfaces are sufficiently far 
not to influence each other, i.e. the presence of one plane does not affect the adsorption in the 
vicinity of the other.  The above calculated interactions are for two flat interfaces, but can 
easily be converted to those for two spherical droplets, using the so called Derjaguin 
approximation13

, (S9)( ) ( )sp pl
r
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valid when the range of interaction is expected to be far smaller than the radius of droplets, R. 
The value of R used in our circulations was 0.5 m (i.e. 1 m sized droplets). However, it is 
easy to repeat the analysis for other values of R. In general, as seen from equation (S9), the 
interactions scale linearly with size.

The SCF calculations efficiently evaluate all the conformations of a chain in the field 
produced by its neighbouring molecules.  Being a numerical calculation (as opposed to a 
simulation) it is considerably faster than simulation techniques such a molecular dynamics or 
Monte Carlo simulations.  In particular, it is much easier to extract values for free energy 
changes and hence induced interaction potentials, using SCFC than any of these other 
techniques.  Nonetheless, the method has a number of disadvantageous that should also be 
borne in mind. Firstly, the method is limited to studying equilibrium behaviour.  In other 
words, no dynamical or transient phenomenon, such as speed of adsorption can be 
investigated using this method.   Secondly, the calculations assume that all configuration that 
can be taken by a chain are available for it to adopt (i.e. the system is ergodic).  This is very 



often not the case if the protein is trapped in a long-lasting metastable state, as may be the 
case with highly folded globular proteins.  Here we assume that the process of hydrolysis is 
sufficient to destroy most of the secondary or tertiary structure of the resulting polypeptides. 
Finally, as was eluded to further above, SCFC is a mean field type theory.  That is to say that 
it assumes that the behaviour of the system is dominated by the most probable density profile 
in the gap between the two surfaces (i.e. the density profile variation that minimises the free 
energy).  Any fluctuations about this most probable state are ignored.  However, this last 
condition is often satisfied for densely covered surfaces. 

S.2 Calculation of DH

In the idealized model mix system considered here, we only have two protein fragments 
present. Let us denote the number of monomer residues for each of the two polypeptides as 

 and , with chains having  and  remaining cleavable bonds, susceptible to further 𝑁1 𝑁2 𝑛1 𝑛2
hydrolysis by enzyme, still  unbroken in their primary structure. Then their presence in the 
bulk solution, in terms of their relative volume fractions / , has the following Φ1 Φ2

relationship with the probability  of getting a susceptible (to the chosen selective enzyme) 𝑝
peptide bond cleaved 
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In deriving the above equation, we make the assumption that all the cleavable bonds (i.e. the 
C-terminal end of peptide bonds involving either Lysine or Arginine), have the same likely 
chance of being broken by trypsin. With this simplification in mind, then the probability  of 𝑝
getting a susceptible peptide bond broken at a given DH is as follows:

(S11)
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DHp
DH
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where  is the maximum DH value that can be achieved by enzymatic hydrolysis of the 𝐷𝐻𝑚𝑎𝑥
chosen selective enzyme (trypsin here).

With both equation (S10) and (S11) at hand, DH can be estimated for any desired bulk 
volume fraction ratio in the solution between our two protein fragments, according to 
equation (S12) below:
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Now, the soybean β-conglycinin subunit considered in our study is made of 621 amino acid 𝛼'

residues, of which only 84 can be cleaved by trypsin. Thus, the maximum DH achievable via 
trypsin hydrolysis is 84/(621-1) =13.55% (i.e.  =13.55%). The two polymers studied 𝐷𝐻𝑚𝑎𝑥
in our mixed system, i.e. conjugated Glu93-Arg302 and the shorter unreacted fragment 



Met322-Lys355, consist of 210 (or 260 with the attached hydrophilic part) and 34 monomers, 
respectively. That is  260 and  34. Furthermore, they contain 32 and 2 remaining 𝑁1 = 𝑁2 =

cleavable sites according to their primary structure, i.e.  and . Thus, with these 𝑛1 = 32 𝑛2 = 2

numbers, equation (3) become:
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Thus, when the two biopolymers are present on the hydrophobic surface in the ratios of 1:1, 
1:3 and 1:5, the estimated DH for each case is calculated accordingly from equation (13), 

using the corresponding volume fraction ratio in bulk . The bulk volume fraction and 
Φ1 Φ2

the DH values for each case are provided in the Table S2.1.

Table S2.1 -  Estimated DH at a given volume fraction ratio of conjugated Glu93-Arg302 and short unconjugated Met322-
Lys355 

Φ1 Φ2 estimated DH
1:30 2.25 %
1:100 2.69 %
1:150 2.84 %

S.3 Properties of other fragments 

Fig. S.1 - The average distance of each monomer residue, making up the adsorbed soy-derived fragments (Asn210-
Arg247, Asn51-Arg109, Ile251-Lys355, Leu438-Lys607 and Val232-Lys405.), measured perpendicularly away from a 
hydrophobic surface. The distance (in units of monomer size), is plotted against the sequence number of 



monomers, starting with the first monomer at N-terminus end of a polypeptide. Results were obtained at a 
background electrolyte volume fraction of 0.01 (roughly equals to 100 mM NaCl) and at a solution pH = 5.5.

The average conformations of five more protein fragments that can also arise from hydrolysis 
of soy protein by trypsin are provided here. The result show the average distance of each 
monomer of the fragment away from the surface. It is observed that roughly speaking, the 
fragments take three kinds of conformations, i.e. 1) lying flat on the surface, 2) resembling a 
di-block-like polymer, or 3) acting somewhat like a tri-block chain. In particular, shorter 
polypeptides tend to adopt flat configurations on the interface, while there is a higher chance 
of encountering a di-block or tri-block-like behaviour for larger fragments. 
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