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Fig. S1: Nuclear magnetic resonance spectrum of 3.5 kDa Poly(ethylene glycol)-
thioester norbornene in CDCl3 (400 Hz) δ 6.29–5.82 (m, 2H), 3.99–3.42 (m,
1818H)
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Fig. S2: Networks with 50% excess thiol degraded with 0.1 M L-cysteine. This
network does not degrade in this concentration of L-cysteine solution.
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Fig. S3: Strain sweeps of PEG-thioester norbornene CANs. Strain sweeps are
used to identify the linear viscoelastic regime. A strain sweep is used to measure
all scaffolds between 0.5% and 10% strain at a frequency of 1 Hz. From these
measurements, 1% strain is chosen for frequency sweep measurements in the
linear viscoelastic regime.
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Fig. S4: The values of the logarithmic slope of the MSD, α = d log⟨∆r2(τ)⟩
d log τ , for

each network composition before incubating in L-cysteine solution. α ≈ 0 for
all network compositions which is a measure of particles completely arrested in
a gel network.
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Fig. S5: Measurements of each CAN composition before and after incubation
in 1× PBS for 3 hours. Light gray bars are the elastic moduli of unswollen
hydrogels and dark gray bars are the elastic moduli of thioester networks after
incubating for 3 hrs in 1× PBS. The elastic modulus, G′, of thioester networks
does not change.
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Time-cure superposition

Networks with 0% excess thiol
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Fig. S6: Time-cure superposition of PEG-thioester networks with 0% excess
thiol (second replicate experiment). (a) MSDs are measured during degradation
of networks with 0% excess thiol. (b) MSDs are shifted into sol and gel master
curves using shift factors a and b. (c) Shift factors a and b approach zero at
tc = 53 mins. (d) y and z are calculated by plotting the logarithm of shift
factors a and b against the logarithm of distance away from critical degradation

time, ϵ = |t−tc|
tc

. The critical relaxation exponent, n, is calculated from scaling
exponents y and z.
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Fig. S7: Time-cure superposition of PEG-thioester networks with 0% excess
thiol (third replicate experiment). (a) MSDs are measured during degradation
of networks with 0% excess thiol. (b) MSDs are shifted into sol and gel master
curves using shift factors a and b. (c) Shift factors a and b approach zero at
tc = 64.2 mins. (d) y and z are calculated by plotting the logarithm of shift
factors a and b against the logarithm of distance away from critical degradation
time, ϵ. The critical relaxation exponent, n, is calculated from scaling exponents
y and z.
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Networks with 50% excess thiol
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Fig. S8: Time-cure superposition of PEG-thioester networks with 50% excess
thiol (first replicate experiment). (a) MSDs are measured during degradation
of networks with 50% excess thiol with particles coated in BSA. (b) MSDs are
shifted into sol and gel master curves using shift factors a and b. (c) Shift
factors a and b approach zero at tc = 44.2 mins. (d) y and z are calculated by
plotting the logarithm of shift factors a and b against the logarithm of distance
away from critical degradation time, ϵ. The critical relaxation exponent, n, is
calculated from scaling exponents y and z.
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Fig. S9: Time-cure superposition of PEG-thioester networks with 50% excess
thiol (second replicate experiment). (a) MSDs are measured during degradation
of networks with 50% excess thiol with particles coated in BSA. (b) MSDs are
shifted into sol and gel master curves using shift factors a and b. (c) Shift
factors a and b approach zero at tc = 39.9 mins. (d) y and z are calculated by
plotting the logarithm of shift factors a and b against the logarithm of distance
away from critical degradation time, ϵ. The critical relaxation exponent, n, is
calculated from scaling exponents y and z.
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Fig. S10: Time-cure superposition of PEG-thioester networks with 50% excess
thiol (third replicate experiment). (a) MSDs are measured during degradation
of networks with 50% excess thiol with PEGylated particles. (b) MSDs are
shifted into sol and gel master curves using shift factors a and b. (c) Shift
factors a and b approach zero at tc = 42 mins. (d) y and z are calculated by
plotting the logarithm of shift factors a and b against the logarithm of distance
away from critical degradation time, ϵ. The critical relaxation exponent, n, is
calculated from scaling exponents y and z.
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Networks with 100% excess thiol
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Fig. S11: Time-cure superposition of PEG-thioester networks with 100% excess
thiol (first replicate experiment). (a) MSDs are measured during degradation of
networks with 100% excess thiol. (b) MSDs are shifted into sol and gel master
curves using shift factors a and b. (c) Shift factors a and b approach zero at
tc = 10 mins. (d) y and z are calculated by plotting the logarithm of shift
factors a and b against the logarithm of distance away from critical degradation
time, ϵ. The critical relaxation exponent, n, is calculated from scaling exponents
y and z.
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Fig. S12: Time-cure superposition of PEG-thioester networks with 100% excess
thiol (second replicate experiment). (a) MSDs are measured during degradation
of networks with 100% excess thiol. (b) MSDs are shifted into sol and gel master
curves using shift factors a and b. (c) Shift factors a and b approach zero at
tc = 22.5 mins. (d) y and z are calculated by plotting the logarithm of shift
factors a and b against the logarithm of distance away from critical degradation
time, ϵ. The critical relaxation exponent, n, is calculated from scaling exponents
y and z.
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Fig. S13: Time-cure superposition of PEG-thioester networks with 100% excess
thiol (third replicate experiment). (a) MSDs are measured during the degrada-
tion of networks with 100% excess thiol. (b) MSDs are shifted into sol and gel
master curves using shift factors a and b. (c) Shift factors a and b approach
zero at tc = 12.8 mins. (d) y and z are calculated by plotting the logarithm of
shift factors a and b against the logarithm of distance away from critical degra-
dation time, ϵ. The critical relaxation exponent, n, is calculated from scaling
exponents y and z.
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Networks with 0% excess thiol degraded with a second concentration
of L-cysteine
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Fig. S14: TCS analysis of 0% excess thiol networks degraded with 0.2 M L-
cysteine shows the value of n does not change when the concentration of L-
cysteine is changed. (a) MSDs are measured during the degradation of networks
with 0% excess thiol. (b) MSDs are shifted into sol and gel master curves using
shift factors a and b. (c) Shift factors a and b approach zero at tc = 36.1 mins.
(d) y and z are calculated by plotting the logarithm of shift factors a and b
against the logarithm of distance away from critical degradation time. The
critical relaxation exponent, n, is calculated from the scaling exponents y and
z.
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MPT characterization of all three network compositions
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Fig. S15: Thioester networks with 0%, 50% and 100% excess thiol undergo
rearrangement during degradation with L-cysteine. Network rearrangement in
all three networks is compared by plotting the values of the logarithmic slope

of the MSD, α, during degradation against normalized time, tnorm =
t−tαlow

tαmax

where t is the time data are collected, tαlow
is the time when the value of α

starts to increase and tαmax
is the time when α is a maximum.
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Rheological and spatial heterogeneity analysis of MPT data of degra-
dation of all three network compositions
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Fig. S16: Fig. S16 (a-d) Rheological and (e-h) spatial heterogeneity in the mi-
croenvironments particles are probing during degradation of 0% excess thiol.
(a-d) Particle diffusivity is plotted at the starting position of the probe parti-
cle, color indicates the diffusivity. (e-h) Histograms of the diffusivity of probe
particles along the x-axis, measuring spatial heterogeneity. Each bin is 12.5 µm
in size. Each column of probe diffusivity and spatial heterogeneity is measured
at a different time relative to the critical degradation time. This relative time,
tr, is calculated using tr = t−tc

tc
where t is the time data are collected and tc

is the critical degradation time. (a, e) Data collected at tr = −0.32, which is
before degradation. Initial probe diffusivity is low and the system is rheologi-
cally and spatially homogeneous. (b, d) Data measured at tr = 0.23, which is
after tc, where network rearrangement takes place. Since this is during rear-
rangement when a sample-spanning network is reformed, a lower value of probe
diffusivity is measured. Both rheological and spatial heterogeneity are low. (c,
g) Data collected after network rearrangement and before complete degradation
at tr = 0.28. There are a few particles in this data that have lower diffusivities
and this is likely due to polymeric clusters that have not yet degraded. This
sample has a small amount of rheological heterogeneity and is spatially homo-
geneous. (e, h) At tr = 0.45, the sample has degraded completely. This sample
is spatially and rheologically homogeneous.
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Fig. S17: (a-d) Rheological and (e-h) spatial heterogeneity in the microenvi-
ronments particles are probing during degradation of 50% excess thiol. (a-d)
Particle diffusivity is plotted at the starting position of the probe particle, color
indicates the diffusivity. (e-h) Histograms of the diffusivity of probe particles
along the x-axis, measuring spatial heterogeneity. Each bin is 12.5 µm in size.
Each column of probe diffusivity and spatial heterogeneity is measured at a
different time relative to the critical degradation time. This relative time, tr, is
calculated using tr = t−tc

tc
where t is the time data are collected and tc is the

critical degradation time. (a, e) Data collected at tr = −0.38, which is before
degradation. Initial probe diffusivity is low and the system is rheologically and
spatially homogeneous. (b, d) Data measured at tr = 0.26, which is after tc,
where network rearrangement takes place. Since this is during rearrangement
when the material can reform polymer clusters but a sample-spanning network
does not form, a moderate value of probe diffusivity is measured because these
networks form sample-spanning networks. Both rheological and spatial hetero-
geneity is low. (c, g) Data collected after network rearrangement and before
complete degradation at tr = −0.33. There are a few particles in this data that
have lower diffusivities and this is likely due to polymeric clusters that have not
yet degraded. This sample has a small amount of rheological heterogeneity and
is spatially homogeneous. (e, h) At tr = 0.5, the sample has degraded com-
pletely. This sample is spatially and rheologically homogeneous.
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Fig. S18: (a-d) Rheological and (e-h) spatial heterogeneity in the microenvi-
ronments particles are probing during degradation of 100% excess thiol. (a-d)
Particle diffusivity is plotted at the starting position of the probe particle, color
indicates the diffusivity. (e-h) Histograms of the diffusivity of probe particles
along the x-axis, measuring spatial heterogeneity. Each bin is 16 µm in size.
Each column of probe diffusivity and spatial heterogeneity is measured at a
different time relative to the critical degradation time. This relative time, tr, is
calculated using tr = t−tc

tc
where t is the time data are collected and tc is the

critical degradation time. (a, e) Data collected at tr = −0.68, which is before
the degradation. Initial probe diffusivity is low. We do measure a small amount
of rheological and spatial heterogeneity. This is likely due to the large amount
of exchange reactions taking place. (b, d) Data measured at tr = 0.33, which is
after tc, where network rearrangement takes place. Both rheological and spatial
heterogeneity is measured but is relatively low. (c, g) Data collected after net-
work rearrangement and before complete degradation at tr = 0.42. This sample
has no rheological or spatial heterogeneity. (e, h) At tr = 0.73, the sample has
degraded completely. This sample is spatially and rheologically homogeneous.

17



600

500

400

300

200

100

G
' (

H
z)

1.00.80.60.40.2
Frequency (Hz)

excess thiol-
0%
50%
100%

Fig. S19: Storage modulus, G′, of thioester networks is measured using fre-
quency sweep measurements at 1% strain.
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