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1 Chemical Potentials and Time Evolution in the UDM
Starting from the free-energy functional of the equilibrium Uneyama-Doi model (UDM), we derive the explicit form of the
chemical potentials for the model system of a diblock copolymer P (amphiphilic product), consisting of blocks A, B, and
a homopolymer R (hydrophilic reactant) in solution S/F . Taking Equation 3 and the definition µc(r) = δF/δφ(r), one
obtains
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for c̃ = S,F,R and the definition ψc(r) =
√

φc(r). Using these chemical potentials in the model-B dynamics and including
the reaction terms, we obtain the full set of governing evolution equations
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where the fuel F is not consumed in the forward reaction.

2 Growth Rates of Phase-Separation Processes
To calculate the growth rates for the phase separation processes between diblock copolymer (amphiphile) and solvent as
well as between the two blocks of the copolymer, we perform a linear stability analysis of the time evolution around a
spatially homogeneous concentration. We invoke the two simplifications in Analytical Predictions of the main text: (i) We
assume the fuel be homogeneously distributed, φF(r) = ρF . (ii) Moreover, we assume φR(r)/ρR = φS(r)/ρS and introduce
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a joint density for the hydrophilic components, φH = φS +φR, and concomitant chemical potential
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The incompressibility constraint, ∑c φc(r) = 1, allows us to determine the Lagrange field, π(r),50 from the time evolution,
Equation SI.4-SI.7, resulting in
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where noise is ignored and in the second line the explicit form of the Onsager coefficient was used. Using φH = 1−ρF −
φA −φB, one is left with a time evolution for components A and B. Explicitly, we have
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We linearize Equation SI.12 and SI.13 around the mean concentrations, φc(r, t) = ρc + δφc(r, t) for small deviations
δφc(r, t)≪ 1. Defining δδδφφφ(r, t) = (δφA(r, t),δφB(r, t))⊺, we obtain

∂tδδδφφφ(r, t) = Σ[∇2]δδδφφφ(r, t) (SI.14)

with the linear evolution operator Σ[∇2]. This is readily solved in Fourier space where the equation becomes
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δδδφφφ±(q) are the eigenvectors of the evolution operator, Σ̂(q), corresponding to the eigenvalues σ±(q), and c± ∈ R. The
matrix elements of the Fourier-transformed evolution operator read
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where we used ρP = ρA +ρB. The other entries, Σ̂B,A/B(q), are obtained by exchanging A ↔ B. The evolution only depends
on the absolute value of the wavevector, q = |q|. The eigenvalues of the 2×2-matrix Σ̂(q) are given by the solution of the
characteristic polynomial.
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In the simplest, most intuitive form, the two eigenvectors correspond to the two processes: "PH" – phase separation of
polymer and solvent or "AB" – phase separation between the two polymer blocks, respectively. To illustrate this, it turns
out to be useful to plot the angle of the corresponding (normalized) eigenvectors ϕ±(q) = arctan2( ˆδδδφφφ±(q))modπ. This
quantity can be better understood by considering special cases (i) ϕ = 0 ⇒ δφA ̸= 0,δφB = 0: A phase separates from H, (ii)
ϕ = arctan( fB/ fA) =: ϕ∗ ⇒ δφA/ fA = δφB/ fB: A and B phase separate from H (process PH), (iii) ϕ = π

2 ⇒ δφA = 0, δφB ̸= 0:
B phase separates from H and (iv) ϕ = 3π

4 ⇒ δφA =−δφB ⇒ δφH = 0: A phase separates from B (process AB).

First, we consider symmetric diblock copolymers (amphiphiles) in a nonselective solvent. The corresponding growth
rates and angles of the eigenvectors are shown in Figure SI.1. Due to the symmetry, the two processes, ∆φAB and ∆φPH ,
are eigenmodes of the linearized evolution operator for all wavevectors, q. However, the assignment to the eigenmodes
switches, i. e., for small qRe the PH process corresponds to the fastest growing mode, ∆φPH = ∆φ+, whereas for larger qRe,
microphase separation between A and B is the fastest growing mode. This switching occurs when the growth rates as a
function of q cross.

The linear growth becomes more complicated for asymmetric diblock copolymers, as also shown in Figure SI.1: (i) The
two processes of phase separation, macrophase separation PH and microphase separation AB, are no longer eigenmodes
of the linearized evolution operator. (ii) The growth eigenmodes do not abruptly switch their process character but the
angles ϕ± rather gradually change with wavevector, q. Moreover, the crossing of the growth rates σ±(q) is avoided.

Nevertheless, we can reveal the contribution of each process by projecting onto these. For this, we initialize the system,
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2
(1,−1)⊺ and δδδφφφ PH = 1√

f 2
A+ f 2

B
( fA, fB)

⊺. The affiliated coefficients,

c := (c+, c−)⊺, are given by
cm = T−1

δδδφφφ m (SI.21)

where T = (δδδφφφ+, δδδφφφ−)
⊺ is the transformation matrix from the basis of eigenvectors into the Cartesian coordinates. Since

the modes AB and PH are no eigenvectors, a system initialized with these will also excite other modes. Hence, to gain
an insight into their contribution to the above growth rates, we need to look at the instantaneous, or short time behavior,
when other modes are not yet excited and project onto the respective modes. This yields
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which denotes the growth of the amplitude of mode δδδφφφ m independent of excitation of other modes, with P(q,0) = 1∀q.
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Fig. SI.1 Growth rates σ±(q) (top) and corresponding eigenvector angles ϕ(q) (bottom) plotted against the wavevector q for symmetric ( fA = 0.5, left)
and asymmetric ( fA = 0.3, right) diblock copolymers (amphiphiles) in a nonselective solvent for various mean polymer concentrations (lighter shades
correspond to lower ρP in steps of ∆ρP = 0.2, starting at ρP = 0.2. Flory-Huggins parameters are χAB = 3, χAH = 0, χBH = 0.

From this one can obtain the projected growth rate of mode m = AB, PH as the time derivative of its logarithm,

σ̃m : =
d
dt
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∣∣∣∣
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(SI.23)
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which denotes the growth rate contribution of the modes m to those of the eigenvectors and are shown in Figure SI.1 as
dashed lines.

For asymmetric copolymers in nonselective solvent, the growth eigenmodes correspond to the PH and AB process as
follows. For small qRe the fastest growing mode resembles the macrophase-separation process PH, whereas for large
qRe the fastest growing mode has more the character of microphase separation AB. For larger qRe, the slower mode
resembles the PH process but it is suppressed, σ− < 0, corresponding to a decay of composition fluctuations (mixing)
between amphiphilic product and hydrophphilic components. The angle, ϕ−, however, remains smaller than ϕ∗, i. e.,
δφB/ fB < δφA/ fA, indicating an entropic preference of the nonselective solvent towards the minority block, A.

For the situation of repulsive solvent, where the homogeneous solution becomes unstable to both processes at different
wave numbers, one can observe a double peak structure in the larger growth rate, as shown in Figure SI.2. Here it becomes
additionally visible that the growth rate is the results of two unstable modes with overlapping peaks.

In a more general case, however, the two peaks are wider and can overlap in such a way that only one peak is visible in
the larger eigenvalue, σ+(q). This is the case especially, when the polymer-solvent segregation becomes stronger and its
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Fig. SI.2 Growth rates σ±(q) (top) and corresponding eigenvector angles ϕ±(q) plotted against the wavevector q for a slightly asymmetric diblock
copolymer, fA = 0.45, in an incompatible solvent for various polymer mean concentration, colored as in Figure SI.1. Flory-Huggins parameters are
χAB = 4, χAH = 2, χBH = 2. The growth-rate of the PH and AB processes are given as dashed and dotted lines as computed in Equation SI.24.

corresponding peak widens. The above projection method still allows to observe the respective contribution of the PH and
AB process. This is the case, if we consider the system of the main text, an asymmetric, amphiphilic diblock copolymer
in aqueous solution, i. e., where the majority block has a strong repulsion toward the solvent. The result is shown in
Figure SI.3. One can observe that, starting from homogeneous solution with low polymer concentration, the block-block
segregation is not immediately growing. Rather the segregation will start once the polymer has phase-separated from the
solvent. A stronger block-block interaction will change this behavior and actually result in the block-block segregation
being the faster growing process, even at low polymer concentrations, as demonstrated on the right in Figure SI.3.

Reactions in the system will shift the above growth rate downwards, independent of the wave number, q. While this
will transforms the macrophase separating process PH to become microphase separating, as the smallest wave numbers
are suppressed, the change of initial growth of fluctuations from the homogeneous solution is small for strongly segregated
systems. Rather, the effects of an effective microphase separation in the PH process will become dominant in the long-time
limit which can be treated by mapping the system onto known equilibrium dynamics. This is done in the following section.

3 Effective Free-Energy Functional
The linear stability analysis of the previous section determines the short-time evolution. Here we will show that the
nonequilibrium stationary state formed by Reaction-Driven Assembly (RDA) consists of a dense lattice of aggregates. To
this end, we demonstrate that the ordering phenomena can be approximately mapped onto the ordering kinetics of an
equivalent diblock copolymer melt described by an equilibrium free-energy functional, i. e., the evolution equations for (i)
homogeneous fuel concentration and (ii) joint distribution of hydrophilic components, S and R, can be written as potential
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Fig. SI.3 Growth rates σ±(q) and projected growth rates σ̃AB/PH (top) and corresponding eigenvector angles ϕ(q) plotted against the wave number q
for an asymmetric, amphiphilic diblock copolymer, fA = 0.3, χAH = 0.5, χBH = 4, in aqueous solution for various polymer mean concentrations, colored
as in Figure SI.1. The block-block repulsion taken in the main text, χABNP = 20 is shown on the left, while a stronger one, χABNP = 40 is shown on
the right.

dynamics in an effective free-energy landscape that is equivalent to one of block copolymers.
Initially, we do so for a simplified system, where we replace the amphiphilic product by hydrophobic homopolymer P,

i. e., fA = 0. Thus, we study an incompressible binary mixture of hydrophobic product, P, and hydrophilic species, H –
solvent and precursor/reactant. Afterwards we generalize our result to an amphiphilic product.

To understand the effect of RDA, we write down the evolution equation for the product polymer P,

∂φP
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where we have again split the densities into a spatially homogeneous part, ρc, and the deviations from it, δφc = φc −ρc.
Starting from arbitrary mean concentration ρi, these will exponentially fast approach the stationary ones,

rbρP = r f ρF ρR (SI.27)
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such that the terms that only contain spatial averages cancel. Then, the time evolution can be approximated in an effective
form to recover complete model-B dynamics, i. e.
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and likewise for the second, hydrophilic component,
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where we introduced effective chemical potentials µeff
c = δF eff/δφc that can be derived from an effective free-energy
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where we have used Equation SI.27. Also note that δφH/ρH = δφR/ρR because of assumption (ii). Therefore, the constant
turnover of precursor to product and vice versa introduces an effective term to the free energy that corresponds to a weak
connectivity between the two chemically active components, R and P, in agreement with similar work58,60

A similar argument can be made for the RDA of amphiphiles. Again, we consider simplification (i) and (ii), and this
time treat φA and φB separately. This procedure yields the effective free-energy functional
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where ρP = ρA/ fA = ρB/ fB. Again, in the nonequilibrium steady state, the reactions give rise to an effective, weak connec-
tivity between hydrophilic precursor and the blocks of the amphiphilic diblock copolymer, which scales with the reaction
rate.

We can obtain the corresponding inverse structure factor of the homogeneous state as the second-order vertex function
in the above free-energy expansion, i. e., the Hessian of the free energy with respect to the concentration fields. This is
most easily done in Fourier space

S −1
cc′ (q) =

∂ 2F eff[φA(q′),φB(q′),φH(q′)]

∂φc(q)∂φc′(q)
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for c,c′ = A,B,H. By virtue of incompressibility, we replace φH(q) = 1−φA(q)−φB(q), omitting the Lagrange field, π. This
way, the curvature of the free energy becomes a 2×2-matrix, with

S −1
cc′ (q) =

∂ 2F eff[φA(q′),φB(q′),1−φA(q′)−φB(q′)]

∂φc(q)∂φc′(q)
=
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c (q)

∂φc′(q)
− ∂ µeff

H (q)
∂φc′(q)

(SI.35)

for now c,c′ = A,B. We can relate this quantity to the linearized evolution operator of the previous section, Σ̂(q). For this,
we notice that the incompressible model-B dynamics of Equation SI.11 can be written as
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Linearizing Equation SI.36 and Fourier transforming, we obtain up to O(δφ 2
c )
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with the constant Onsager matrix
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e√
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(
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)
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Thus the curvature of the free energy can be written in terms of the linearized evolution operator as

S −1(q) =−Λ̃
−1 Σ̂(q)

q2 (SI.40)

The homogeneous solution becomes unstable if S −1(q) possesses a negative eigenvalue. Similar to the linearized
evolution operator, Σ̂(q), in general, the eigenmodes of S −1(q) do not directly correspond to the demixing processes PH
or AB, but are a linear combination of these. However, as before, we can project onto the respective process modes and
gain insights into their contributions to the eigenmodes. This change of the projections of the inverse structure factor with
reaction rates is presented in the left-hand side plots of Figure 2 and discussed in the main text.

4 Numerical Implementation

We use a pseudo-spectral method to numerically propagate the system of coupled partial differential equations, employing
a Fast Fourier Transformation (FFT) combined with semi-implicit Euler time-stepping. A major problem for the numer-

ical stability is the divergence of the chemical potentials for small densities, µc
φc→0−→ −∞. It proves to be numerically

stabilizing to use an auxiliary order-parameter field, ψ(r, t) =
√

φ(r, t), for which the corresponding chemical potential
µ̃c(r) = δF/δψc(r) = 2ψc(r)µc(r) vanishes for small densities48. In doing so, the density-conserving part of Equation SI.4-
SI.7 without thermal noise can be rewritten to
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√
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e
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[
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2
c ∇
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=
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1
2
[
ψc∇

2
µ̃c − µ̃c∇

2
ψc
]

(SI.42)

In this representation, all quantities are well-behaved and the Laplacians ∇2 can be readily evaluated in Fourier space.
Given a morphology {φc(r, t)} and temporal discretization ∆t, one (i) calculates the chemical potentials and (ii) gener-

ates the spatially correlated, random fields that fulfill the fluctuation-dissipation relation, Equation 10. This is done from
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Fig. SI.4 Measured radii for the spherical micelles and vesicles. The radius R is always measured to the outer border, while R̃ measures to center of
the vesicle’s bilayer of thickness D.

spatially and temporally uncorrelated Gaussian random fields with unit variance, as described in Ref.48. Having these
one wishes to obtain the density fields at time t +∆t. Note that the Laplacian of the chemical potential contains a term
proportional to −∇4φc. In Fourier space this becomes −q4φ̂c for wavevector q and Fourier transformed φ̂c. High Fourier
modes are thus highly damped, however, treating such a term explicitly will necessitate minuscule time steps. Hence these
are treated implicitly. One problem is that these terms in general are not linear in φc. In principle, it is possible to evaluate
these using a finite-differences scheme and solving a set of sparse linear equations for the inversion50. Here, we resolve
to treating only a single term that is linear in φc implicitly. Inverting is now trivially done in Fourier space. The final time
evolution hence reads

(1+∆tλℓcR4
e∇

4)φc(r, t +∆t) = φc +∆tλℓcR4
e∇

4
φc +

∆tλR5
e

2
√

¯N kBT

[
ψc∇

2
µ̃c − µ̃c∇

2
ψc
]
+
√

∆tξc (SI.43)

where λℓcR4
e is the linear prefactor for each component and all fields on the right hand side (r.h.s.) are evaluated at (r, t).

To obtain the time-propagated concentration fields, one needs to (iii) evaluate the r.h.s. and (iv) invert the linear equation
in Fourier space, using φ̂c(q, t +∆t) = 1

1+∆tλℓc(qRe)4 [ ˆr.h.s.]. The final step (v) consists of regularizing the concentration fields

to keep them positive. Unlike Ref.48, we cannot simply set the concentration fields to zero, where they become negative
because such a procedure does not conserve ρc and significantly influences the spatially average concentrations over
long times. Instead, we take the material that is necessary to keep the concentration positive from a randomly drawn
neighboring cell. Doing so in a parallel fashion requires the use of atomic operations, for reading out the availability of
material from the neighbor and subsequently taking it after checking that its value has not been changed with an atomic
compare-and-swap operation.

We implemented the numerical procedure in our C-software with Graphics Processing Unit (GPU)-acceleration using the
Compute Unified Device Architecture by Nvidia® (CUDA). CUDA readily provides all of the above operations, including
a fast implementation of the FFTs, which are most compute time consuming. The code is available open source via
www.gitlab.com/g.ibbeken/udm.

5 Measurement of Micelle and Vesicle Radii

For the measurement of the radii R of individual micelles and vesicles, we perform a Hoshen-Koppelman cluster analysis
(HKCA)75,76. To this end, we take the tail-group concentration, φB, and determine where it is greater than φ thresh

B = 1
2 . The

HKCA then allows us to distinguish individual micelles and vesicles and obtain a map

ηα(r) =

{
1 where φB > φ thresh

B in cluster α

0 else.
(SI.44)

where the index α runs over all clusters. One can calculate for each cluster its volume vα , center of mass rcm,α , and radius
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of gyration, R̃α , according to

vα =
∫

drηα(r) (SI.45)

rcm,α =
1

vα

∫
drηα(r)r (SI.46)

R̃2
α =

1
vα

∫
drηα(r)|r− rcm,α |2. (SI.47)

Note that for a large spherical vesicle, R̃α is the vesicle’s radius up to corrections of order O((D/R̃α)
2), with D being the

bilayer thickness. In doing so we evaluate the cluster radii, Rα , by assuming a spherical shape and distinguishing between
micelle and vesicles. In both cases, Rα measures the radius to the very outside, i. e.,

Rα =


√

5
3 R̃α if ηα(rcm,α) = 1 (micelle)

R̃α

(
1+ζα − 1

ζα

)
+O((Dα/R̃α)

3) else.
(SI.48)

with the definition

ζα :=
3

√√√√√1+
(

3vα

16πR̃3

)2

+
3vα

16πR̃3 (SI.49)

This way the radius, Rα , stays continuous upon transition from micelle to vesicle, e. g., via pathway II. This becomes visible
in Figure SI.4: A slightly larger aggregate volume forms a vesicle with a small lumen. Measuring this aggregate’s radius
to the center of the bilayer would result in a discontinuity in the radius.

6 Kinetics of Structure Formation in Particle-Based Simulations

Here we demonstrate the time evolution in the particle-based simulations, corresponding to the continuum simulations
presented in the main text in Figure 3. In Figure SI.5 we present the kinetics of RDA for two reaction rates, rb = 5.2 ·10−3

and rb = 2.1 · 10−2. One can see the real-space morphology of the product-polymer tails, φB(r, t) as well as the structure
factor SBB(q) in reciprocal space.

In the case of smaller reaction rates, the time-evolution progresses exactly as in the continuum model: vesicles form
via pathway I and coarsening arrests afterwards such that the vesicles obtain finite and uniform size. In the case of
high reaction rates, as given here, the lattice spacing is so small that aggregates remain micelles. However, we observe
the emergence of non-spherical aggregates, such as cylindrical and disc-like micelles which stay stable for long times.
Additionally, for this kind of amphiphiles chosen in the particle-based model, we do not observe pathway II even for slightly
smaller reaction rates which is related to the higher block-block repulsion, χABNP. Both of these examples are also provided
as videos with the files particle-based-impl-fuel-rb5.2e-3.mp4 and particle-based-impl-fuel-rb1.2e-2.mp4.

7 Precursor Enrichment in RDA Vesicles

As described in the main text, precursor is enriched inside vesicles formed by RDA. The origin of this behavior can be
easily analyzed in the particle-based model. To this end, we set up particle-based simulation with a single vesicle with
radius 2.37Re and bilayer thickness D = 0.85Re in a spherical domain with a radius of RV = 4.25Re. We use the reaction
rates r f ρF = 4.18 · 10−2τ

−1
0 , rb = 1.05 · 10−3τ

−1
0 , with ρR + ρP = 0.25 and implicitly treat the fuel. In the nonequilibrium

stationary state, we track the positions of the individual polymers and categorize them according to (i) being in the
precursor/reactant or product state and (ii) whether they are positioned in the inner leaflet/the inside of the vesicles
membrane or not. We categorize the polymers in the 4 states every 500MCS ≈ τ0

5 and determine the transition rates
between these states. We map the dynamics of polymer states onto a Markov jump process, describing the state occupations
by a vector,

γγγ =


P(precursoroutside)
P(precursor inside)
P(productoutside)
P(product inside)

 (SI.50)
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Fig. SI.5 Time evolution of the hydrophobic tail densities in the particle-based simulations starting from a homogeneous initial configuration, both, in
real space, φB(r), and in reciprocal q-space, SBB(q). Reaction rates are chosen (a) r f ρF = 5.2 ·10−3τ

−1
0 , rb = 1.3 ·10−3τ

−1
0 and (b) r f ρF = 2.1 ·10−2τ

−1
0 ,

rb = 5.2 ·10−3τ
−1
0 .
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where P(·) denotes the probability to find a polymer in a certain state. The time evolution of the occupation vector
follows

∂tγγγ = M̂ γγγ (SI.51)

and we measured the generator, M̂ , i. e., all transition rates

M̂ =

−4.29 ·10−2 5.23 ·10−3 1.12 ·10−2 1.05 ·10−4

3.58 ·10−3 −5.39 ·10−2 9.13 ·10−5 8.27 ·10−3

3.71 ·10−2 5.86 ·10−3 −2.98 ·10−1 7.77 ·10−1

2.11 ·10−3 4.29 ·10−2 2.85 ·10−1 −7.87 ·10−1



 · τ−1
0 (SI.52)

The transition rates that explain the precursor enrichment are highlighted. Most notably, in the red box, precursor
that is located inside the vesicle originated as amphiphilic product in the inner leaflet of the bilayer membrane and vice
versa. The blue boxes indicate the slow exchange of precursor across the vesicle’s membrane compared to the flip-flopping
of product polymers inside the bilayer, displayed in the bottom right quadrant. Finally, the stationary state of this jump
process is

lim
t→∞

γγγ(t) =


0.157
0.043
0.583
0.217

 (SI.53)

From this one can infer that the precursor density on the outside, φR,out = γ0
(ρR+ρP)V

Vout
= γ0(ρR +ρP)

R3
V

R3
V−R3 ≈ 0.05, is signif-

icantly smaller than on the inside, φR,in = γ1
(ρR+ρP)V

Vin
= γ1(ρR +ρP)

R3
V

(R−D)3 ≈ 0.245. Furthermore the fraction of precursor
polymers on the inside γ1/(γ0 + γ1)≈ 0.22 is only slightly lower than the fraction of product polymers on the inner leaflet
of the bilayer γ3/(γ2 + γ3)≈ 0.27.
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