Supporting Information

Rheological study of nanoemulsions with repulsive and attractive interdroplet

interactions

Zahra Abbasian Chaleshtari ^a and Reza Foudazi ^{b*}

^a Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, USA

^b School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK,

USA

Figure S1. Contribution from SDS micelle depletion, VDW and electrostatic repulsion to the overall interaction potential of nanoemulsions with different dominant interactions over a volume fractions range.

^{*} Corresponding author, email: <u>rfoudazi@ou.edu</u>.

Figure S2. Oscillatory interaction energy for various oil volume fractions of nanoemulsions in three different regimes with U > 0, $U_{min} \sim -kT$, and $U_{min} \sim -20kT$ as a function of interdroplet distance h. The U_{OSF} is present in $h > d_{m,eff}$ and it is assumed that the patterned region is filled with one layer of micelles with effective diameter of $d_{m,eff}$. $d_{m,eff} = d_m + 2\kappa^{-1}$ where d_m is the SDS micelles diameter ($\approx 4.8 \text{ nm}$).¹

Figure S3. Complex viscosity of the nanoemulsions at $\varphi = 35\%$ *as a function of frequency.*

Figure S4. Different stages for constructing a master curve for storage and loss moduli of nanoemulsions with different interaction potentials and volume fractions in viscoelastic region: (a1-a2) Frequency dependence of scaled storage and loss moduli of the nanoemulsions with repulsive, weakly attractive and strongly attractive interactions and 40%-60% volume fraction. The subscripts of r, a, and g for φ stand for repulsive, weakly attractive, and strongly attractive regions (gel), respectfully. The filled symbols are at $\varphi = 50\%$, which is considered as reference for superposition shifts. (b1-b2) Data points shifted horizontally with shift factor of $\alpha_{\varphi,U}$ (constant for both moduli) and vertically with shift factor $\beta_{\varphi,U}$ for storage modulus or $\beta'_{\varphi,U}$ for loss modulus. (c1-c2) The master curve for storage and loss modulus of nanoemulsions with different interaction potentials achieved by a second vertical transition with shift factor of γ_U which is constant for both moduli and is only a function of potential energy.

Figure S5. Shift factors for transition of storage and loss moduli of nanoemulsions and master curve construction.

References

 Petsev, D. N.; Denkov, N. D.; Kralchevsky, P. A. Flocculation of Deformable Emulsion Droplets. Ii. Interaction Energy. *J. Colloid Interface Sci.* 1995, *176* (1), 201–213. https://doi.org/10.1006/jcis.1995.0023.