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1 Smoluchowski Equation derivation
We begin with a general Smoluchowski equation governing the total probability density PN+2(x1, ...,xN+2, t):

∂PN+2

∂ t
+

N+2

∑
i=1

∇i · ji = 0. (1.1)

Here, i = 1 refers to the probe, i = 2 is the quiescent colloid, and i = 3, ...,N +2 are the N depletant particles. We will refer
to all particle positions relative to the probe particle, ri = xi −x1. Using chain rule, all derivatives are taken with respect
to the relative coordinate ri, and the absolute position of the probe does not matter. The relative particle translational flux
is given by ji = (ji − j1) = UiPN where Ui is the particle velocity.

In a suspension, particles move under the action of external forces Fext, interparticle forces FP, and entropic or thermal
forces kBT ∇ln PN+2, such that the particle velocity may be expressed as:

Ui =
N+2

∑
j=1

[Mi j · (Fext
j +FP

j )−Di j ·∇ jln PN ] (1.2)

The hydrodynamic mobility tensor, Mi j = (kBT )−1Di j, couples a force exerted on particle j to the velocity of particle i,
where Di j is the diffusion coefficient. Neglecting hydrodynamic interactions, the diffusivity is isotropic and constant, such
that Mi j = δi jζ

−1
i j . The drag coefficients for colloids and depletants are given by ζc and ζb, respectively.

We observe that the many-body probability density PN+2 can be re-expressed as a product of conditional probabilities
or distributions, P1P1|1P1|2...P1|N+1. By definition, P1|n is the conditional probability of finding the n+1-th particle given the
positions of the previous n particles.

Assuming the depletant particles are statistically homogeneous and indistinguishable, we integrate Eq. 1.1- 1.2 over
the N −1 depletant particles:

∂ (P1|1P1|2)

∂ t
+∇ · ⟨j2 − j1⟩3 +∇h · ⟨j3 − j1⟩3 = 0 (1.3)

where the averaged colloidal and depletant fluxes are given by:

⟨j2 − j1⟩3 =−U1P1|1P1|2 +
∫ [

M22PN+1|1 ·FP
2 −D22 ·∇PN+1|1

]
dr4...drN+2 (1.4)

and:
⟨j3 − j1⟩3 =−U1P1|1P1|2 +

∫ [
M33PN+1|1 ·FP

3 −D33 ·∇hPN+1|1
]

dr4...drN+2. (1.5)

Note that P1|1(r, t) is the probability of finding the quiescent colloid at position r and P1|2(h, t|r) is the probability of finding
a depletant particle at h given that the quiescent colloid is at r. To be consistent with the main text, we have re-defined
the quiescent colloid position as r = r2 and the depletant degree of freedom as h = r3 for clarity. Furthermore, indices on
gradients with respect to r have been omitted. Note that PN+2 = PN+1|1P1 and that the absolute position of the probe, P1,
does not matter.

We will now consider the relative colloidal flux. Replacing the interparticle forces with derivatives of the log of the
equilibrium Boltzmann distribution, FP

i =−∇iV TOT ∼ kBT ∇ilnPeq
N+1|1, we obtain:

⟨j2 − j1⟩3 =−U1P1|1P1|2 +
∫ [

D22 ·PN+1|1∇ln
Peq

N+1|1

PN+1|1

]
dr4...drN+2 (1.6)
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Substitution of this expansion into Eq. 1.1 results in the BBGKY hierarchy of equations, which quickly becomes analyt-
ically intractable for many particles. A closure is sought by diluteness of the bath particles, replacing (Peq

N+1|1)/(PN+1|1)

with (Peq
1|1Peq

1|2)/(P1|1P1|2) as all neglected terms are O(nb). From this, we obtain:

⟨j2 − j1⟩3 =−U1P1|1P1|2 +D22 ·P1|1P1|2∇ln

[
Peq

1|1Peq
1|2

P1|1P1|2

]
. (1.7)

Analogously, the depletant flux becomes:

⟨j3 − j1⟩3 =−U1P1|1P1|2 +D33 ·P1|1P1|2∇hln

[
Peq

1|1Peq
1|2

P1|1P1|2

]
. (1.8)

We apply the Boltzmann relation, Peq
1|1 ∼ e−V21/kBT and Peq

1|2 ∼ e−(V31+V32)/kBT where the two-body potentials are defined
V21 =V21(r), V31 =V31(h), and V32 =V32(h− r). The fluxes reduce to:

⟨j2 − j1⟩3 =−U1P1|1P1|2 −D22 ·
[
(∇P1|1P1|2)+P1|1P1|2∇V21/(kBT )+P1|1P1|2∇V32/(kBT )

]
(1.9)

⟨j3 − j1⟩3 =−U1P1|1P1|2 −D33 ·
[
(∇hP1|1P1|2)+P1|1P1|2∇hV31/(kBT )+P1|1P1|2∇hV32/(kBT )

]
(1.10)

we can relate these conditional probabilities physical quantities by P1|1 = ncg and P1|2 = nbρ where g is simply the colloidal
pair distribution function and ρ may be thought of as the local depletant structure about the colloidal pair.

The particle velocity is given by U1 =Ucex. We chose to nondimensionalize all distances by the depletant size db, energy
by kBT , and time by the Brownian timescale of the depletant particle, τb

c = d2
b/Db. We recover a final nondimensional

Smoluchowski equation, averaged over N −1 depletants:

∂ (gρ)

∂ t
+∇ · ⟨j2 − j1⟩3 +∇h · ⟨j3 − j1⟩3 = 0 (1.11)

where
⟨j2 − j1⟩3 =−Pecα

−1exgρ −α
−1 [∇(gρ)+gρ∇V21/(kBT )+gρ∇V32/(kBT )] (1.12)

⟨j3 − j1⟩3 =−Pecα
−1exgρ − [∇h(gρ)+gρ∇hV31/(kBT )+gρ∇hV32/(kBT )] . (1.13)

We have defined the relative drag ratio α = Db/Dc and two Péclet Numbers, Pec =Ucdb/Dc and Peb = Pec/α =Ucdb/Db as
documented in the main text.

Finally, we may proceed to integrate Eq. 1.11 over the last depletant particle to obtain the governing equation for the
quiescent colloid distribution about the probe:

∂g
∂ t

+∇ · ⟨j2 − j1⟩2 = 0 (1.14)

where the effective colloidal flux is:

⟨j2 − j1⟩2 =−Pecα
−1exg−α

−1
[

∇g+g∇V21/(kBT )+gnb

∫
ρ∇V32/(kBT )dh

]
. (1.15)

Eq. 1.11-1.13 and Eq. 1.14-1.15 are our main results in this section. In particular, this Smoluchowski framework is general
to any three-particle system and may be used for a number of different species and particle interactions. In the next
section, we proceed to solve these equations using a perturbation expansion approach.

2 Regular Perturbation Expansion
In the limit where the Brownian timescale of the colloid is very small relative to the Brownian timescale of the smaller
depletants (α ≪ 1), we may perform the following regular perturbation expansion for both the colloidal and depletant
structures about the probe.

We expand g≈ g0+α−1g1+α−2g2+O(α−3) and ρ ≈ ρ0+α−1ρ1+α−2ρ2+O(α−3). Observe that, by mass conservation,
we have nc

∫
ρ0dh = 1,

∫
ρi̸=0dh = 0 and similarly for g.

At steady state, the leading order terms of Eq. 1.11-1.13 become:

∇h · [∇hρ0 +ρ0∇h(V31/(kBT )+V32/(kBT ))] = 0 (2.1)
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Which is simply diffusion under an external field. From this, it is clear that the diffusion of depletants, under our assump-
tion that α ≪ 1, is the fastest process in the system. Solved with no flux boundary conditions at contact and unity at
h → ∞, the solution takes on a simple Boltzmann form, ρ0 ∼ e(−V32−V31)/(kBT ).

At O(α−1), the g0 governing equation may be obtained from expanding Eq. 1.14- 1.15 as:

∇ ·
[
Pecg0ex +∇g0 +g0∇V21/(kBT )−g0nc

∫
ρ0∇V32/(kBT )dh

]
= 0. (2.2)

The first three terms on the RHS exactly match active microrheology of a probe navigating through a monodisperse
bath whereas the last term is the potential-of-mean-force contribution from depletants. Because ρ0 follows a Boltzmann
distribution, we find that

∫
nc

∫
ρ0∇V32/(kBT )dh is analogous to an Asakura-Oosawa type depletion potential.

Additionally, at O(α−1), it may be shown through that Eq. 1.11- 1.13 becomes:

∇ρ0 · ⟨j2 − j1⟩0
3 +∇h · [Pecexg0ρ0 −g0ρ1∇h(V31 +V32)−g0∇hρ1] = 0 (2.3)

where the ⟨j2 − j1⟩0
3 is equal to the terms in the bracket of Eq. 2.2. We observe that the leading order colloidal flux and

colloidal microstructure now contribute to the ρ1 solution, effectively coupling the local depletant motion to the slower
colloidal motion.

Finally, once ρ1 is known, it is then possible to obtain g1 through the O(α−2) expansion of Eq. 1.14- 1.15:

∇ ·
[
Pecg1ex +∇g1 +g1∇V21/(kBT )−g1nc

∫
ρ1∇V32/(kBT )dh

]
= 0. (2.4)

3 Microviscosity Calculation
We follow the approach of Squires and Brady, beginning with the total drag force experienced by the probe colloid due to
external driving, thermal forces, and interactions with the particles in suspension:

F1 = M−1
11 ·U1ex +

N+2

∑
j=1

M−1
11 · (D1 j −D11) ·∇ jln(PN+2/Peq

N+2) (3.1)

Neglecting hydrodynamic interactions as we have done before, we have:

F1 = kBT D−1
11 U1ex −

N+2

∑
j=2

kBT ∇ jln(PN+2/Peq
N+2). (3.2)

Similar to the previous section, we use a diluteness closure to replace PN+2/Peq
N+2 with (P1|1P1|2)/(P

eq
1|1Peq

1|2). We now perform
an average over N −1 depletant particles,

⟨F1⟩3 =
∫

F1PN−1|3dr4...drN+2 (3.3)

which recovers:

⟨F1⟩3 = kBT D−1
11 U1exP1|1P1|2 − kBT P1|1P1|2∇ln

[
P1|1P1|2

Peq
1|1Peq

1|2

]
− kBT P1|1P1|2∇hln

[
P1|1P1|2

Peq
1|1Peq

1|2

]
. (3.4)

Substituting the Boltzmann relations, Peq
1|1 ∼ e−V21/kBT and Peq

1|2 ∼ e−(V31+V32)/kBT , we obtain:

⟨F1⟩3 = kBT D−1
11 U1exP1|1P1|2 − kBT ∇(P1|1P1|2)+ kBT P1|1P1|2∇(V21 +V32)− kBT ∇h(P1|1P1|2)+ kBT P1|1P1|2∇h(V31 +V32) (3.5)

Integrating over the last depletant and the colloidal degrees of freedom(
∫
...dhdr) and noting that nb

∫
ρdh = 1, we obtain:

⟨F1⟩1 =kBT D−1
11 U1ex + kBT nc

∫
g∇V21dr+ kBT ncnρ

∫
g
∫

ρ∇V32dhdr

+ kBT ncnρ

∫
g
∫

ρ∇hV32dhdr+ kBT ncnρ

∫
g
∫

ρ∇hV31dhdr
(3.6)

Note that the third and fourth terms on the RHS cancel since ∇V32(r−h) = ∇hV32(r−h). Nondimensionalizing forces by
kBT/db and distances by db, we obtain the final form of the force velocity relation for the probe particle:

⟨F1⟩1 = kBT D−1
11 dbU1ex +nckBT

∫
g∇V21dr+ncnρ kBT

∫
g
∫

ρ∇hV31dhdr (3.7)

3



Eq. 3.7 is the main result of this section and highlights the O(nb) contribution to the drag force of the probe. Using
this expression, the effective viscosity η due to particles in suspension may be expressed through a Stokes relation,
⟨F1⟩1 = 3πηeffdcUc. We find that the effective viscosity of the suspension is given by:

ηeff = η +
nckBT

3πdcUc

∫
g∇V21dr+

ncnbkBT
3πdcUc

∫
g
∫

ρ∇hV31dhdr. (3.8)

From this, the relative microviscosity increment, ∆ηeff/η = (ηeff −η)/η is exactly as given in the main text.
To further elucidate this interaction, we subsitute our perturbation expansion of ρ and group terms in order of their

contributions:

ηeff = η +
nckBT

3πdcUc

∫
g∇V21dr+

ncnbkBT
3πdcUc

∫
g
∫

ρ0∇hV31dhdr+α
−1 ncnbkBT

3πdcUc

∫
g
∫

ρ1∇hV31dhdr. (3.9)

Note that the second and third terms on the RHS of this equation both contain isotropic forces and are leading order
contributions to the microviscosity.

4 Nonequiilbrium pair potential
We will now show how the Smoluchowski framework enables the calculation of an effective, out-of-equilibrium pair poten-
tial between the colloidal particles which may be used in many-body systems. We will consider colloids and depletants as
perfect hard-spheres that experience no pairwise interactions (V31,V32 = 0) except a no-flux condition at contact. To make
analytical progress, we assume that the driving force is much weaker relative to the diffusion of the depletant particle,
allowing a second perturbation expansion in orders of Pec:

ρ0 = ρ0,0 +ρ0,1Pec +O
(
Pe2

c
)

g0 = g0,0 +g0,1Pec +O
(
Pe2

c
)
.

(4.1)

Following the regular perturbation approach, ρ0,0 is given by a Laplace equation with no-flux boundary conditions, which
has the trivial solution that ρ0,0(h|r) = 1 for all |r-h| ≥ (1+dc/db)/2 and |h| ≥ (1+dc/db)/2.

Because advection is weak, the leading order equation for g0,0 contains just the diffusive and interparticle contributions:

∇ ·
[

∇g0,0 −g0,0nc

∫
ρ0,0er-hδ

(
|r-h|− (1+dc/db)

2

)
dh

]
= 0. (4.2)

The Dirac delta function originates from the hard sphere potential at contact. From a simple geometric argument, the
integral range reduces to integration along the major arc length around two overlapping circles centered at the origin and
r, each with radius 1+ dc

db
. The solution to Eq. 4.2 is an isotropic, Boltzmann form g0,0 ∼ e−Veq(r)/kBT where Veq is equivalent

to the Asakura-Oosawa potential.
The governing equation for ρ0,1 contains advective and diffusive contributions:

∇h · [Pecρ0,0ex +∇hρ0,1] = 0 (4.3)

and satisfying no-flux boundary conditions as before. The solution is a simple dipolar distribution that is similar to active
microrheology through a monodisperse bath, ρ0,1 = 1+Pechx/(2h3) for all |r-h| ≥ (1+ dc/db)/2 and |h| ≥ (1+ dc/db)/2.
From this, we can compute the effective force exerted by the depletants and obtain a potential of mean force by integrating
the force to a position r from infinitely-far separation distances. Along the leading front of the probe, we obtain the
following simplified form of the nonequilibrium potential between colloidal particles due to interactions with depletant:

Vneq(r;Pe,α) =
∫ r

∞

∫
θ2

θ1

(1+ dc
db
)
[(

1+ dc
db

)
cosθ ′−H

]
[(

(1+ dc
db
)cosθ ′−H

)2
+
(
(1+ dc

db
)sinθ ′

)2
]3/2 dθ

′dH (4.4)

where the angles θ1 and θ2 are the angles of intersection between the two overlapping circles described earlier. The
nonequilibrium potential along the leading front is plotted in Fig. 5 of the main text.
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Figure 1 Vector plot showing theoretical calculations for the effective force field on the quiescent colloid in units of kBT/db for two different
probe driving strengths: Pec = 0.1 (left), and Pec = 5 (right). The diffusivity ratio is α = 5 and the shaded area |r| < dc represents the
excluded volume due to the hard-sphere colloid-colloid interaction.
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Figure 2 Microviscosity increments decrease for increasing depletant sizes. The depletant (a) and colloid (b) contributions to the micro-
viscosity are shown for three different depletant-colloid size ratios.
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