Supporting Information

Stimuli responsive gelation of tert-butylacetic acid based LMOGs -

applications in remediation of marine oil spill, dye removal and

heavy metal sensing

Varsha Bhardwaj, Ajaykumar M, Patel, Amar Ballabh*

Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002, Gujarat (INDIA).

Contents –

- 1. Solvents utilized in gelation trials
- 2. T_{gel} vs. concentration plots
- 3. Calculation of ΔH for aliphatic solvents
- 4. Toxic Dye Removal plots
- 5. Metal sensing studies
- 6. LOD and Ka values for all the heavy metals tested
- 7. NMR in presence of metal salts
- 8. FT-IR in presence of mercuric metal salts
- 9. Rheology
- 10. Comparative IR spectra of Compound **TBA1** with xerogel, gel solution phase (solvent used n-octane)
- 11. Comparative PXRD patterns
- 12. Crystallographic parameters
- 13. Analytical Data
- 14. ¹H, ¹³C, FT-IR

Sr.	Solvent type	Nature	Solvents
1.	Polar	Protic	Water
			Methanol
			Ethanol
			Isopropanol
			n-butanol
			tert-butanol
			propan-1,2-diol
			hexan-1-ol
			octan-2-ol
			decan-1-ol
			polyethylene glycol
2.	Polar	Aprotic	Acetone
			Ethyl acetate
			Dimethyl Sulfoxide
			Dimethyl Formamide
			Acetonitrile
			Tetrahydrofuran
			Diethyl ether
			Dibenzyl ether
			Diisopropyl ether
2.	Halogenated	Aprotic	Chloroform
			Dichloromethane
			Carbon tetrachloride
3.	Hydrocarbon	Aliphatic	Petroleum ether
			n-Hexane
			n-Heptane
			n-Octane
			n-Decane
			n-Dodecane
			n-Hexadecane
			Cyclohexane
			Decalin
			Petrol
			Diesel
			Kerosene
			Engine oil
			Cooking oil
			Silicone oil
4.	Aromatic		Benzene
			Toluene
			Chlorobenzene

Solvents utilized in gelation trials

5. Mixtures Aliphatic+Aromatic n-hexane + benzene (1:1) n-heptane + benzene (1:1) n-octane + benzene (1:1) decane + benzene (1:1) dodecane + benzene (1:1) hexadecane + benzene (1:1) n-hexane + toluene (1:1) n-heptane + toluene (1:1) dodecane + toluene (1:1) n-octane + toluene (1:1) dodecane + toluene (1:1) dodecane + toluene (1:1) n-hexane + toluene (1:1) dodecane + toluene (1:1) n-hexane + toluene (1:1)
n-heptane + chlorobenzene (1:1) n-octane + chlorobenzene (1:1) dodecane + chlorobenzene (1:1) hexadecane + chlorobenzene (1:1) n-hexane + bromobenzene (1:1) n-heptane + bromobenzene (1:1) n-octane + bromobenzene (1:1) dodecane + bromobenzene (1:1) hexadecane + bromobenzene (1:1) n-heptane + nitrobenzene (1:1) n-heptane + nitrobenzene (1:1) n-heptane + nitrobenzene (1:1) n-octane + nitrobenzene (1:1) dodecane + nitrobenzene (1:1) hexadecane + nitrobenzene (1:1)

Table S1 List of solvents employed for gelation trials Solvents in bold gave gelation

T_{gel} vs. concentration plots

Figure S1 Tgel vs. concentration plots for all gels

Calculation of ΔH for aliphatic solvents

Figure S2 ΔH values for all gels

Toxic Dye Removal plots

Figure S3 Time dependent absorption studies for **TBA4** in aqueous solution of 1.5 mL which contains (a) methylene blue dye at an initial concentration of 25mg/1.5 mL and (b) concentration-time correlation at 664 nm, (c) crystal violet dye at an initial concentration of 25mg/1.5 mL and (d) concentration-time correlation at 583 nm, (e) Rhodamine B dye at an initial concentration of 20mg/1.5mL, in presence of 1 mL of diesel congealed on the water surface using 5% w/v of **TBA4** and (f) its concentration-time correlation at 554 nm.

Figure S4 Time dependent absorption studies for **TBA1** in aqueous solution of 1.5 mL which contains (a) indigo carmine dye at an initial concentration of 25mg/1.5 mL and (b) concentration-time correlation at 610 nm, (c) methyl orange dye at an initial concentration of 25mg/1.5 mL, in presence of 1 mL of diesel congealed on the water surface using 5% w/v of **TBA1** and (d) its concentration-time correlation at 462 nm

Figure S5 Time dependent absorption studies for **TBA4** in aqueous solution of 1.5 mL which contains (a) indigo carmine dye at an initial concentration of 25mg/1.5 mL and (b) concentration-time correlation at 610 nm, (c) methyl orange dye at an initial concentration of 25mg/1.5 mL, in presence of 1 mL of diesel congealed on the water surface using 5% w/v of **TBA4** and (d) its concentration-time correlation at 462 nm

Metal sensing studies

Figure S6 Change in absorbance of **TBA1** with increasing concentrations of cadmium(II), mercury(II) and lead (II), control experiment with sodium acetate; (a) Benesi–Hildebrand plot and (b) detection limit of all metal ions with **TBA1**

Figure S7 Change in absorbance of **TBA3** with increasing concentrations of cadmium(II), mercury(II) and lead (II), control experiment with sodium acetate; (a) Benesi–Hildebrand plot and (b) detection limit of all metal ions with **TBA3**

Figure S8 Change in absorbance of **TBA4** with increasing concentrations of cadmium(II), mercury(II) and lead (II), control experiment with sodium acetate; (a) Benesi–Hildebrand plot and (b) detection limit of all metal ions with **TBA4**

Figure S9 Job's plots for compounds TBA1, TBA3 and TBA4 in presence of mercuric ions

Figure S10 Change in absorbance of **TBA1** with increasing concentrations of manganese(II), cobalt(II), nickel(II) and copper(II) ions, (a) Benesi–Hildebrand plot and (b) detection limit of all metal ions with **TBA1**

Figure S11 Change in absorbance of **TBA3** with increasing concentrations of manganese(II), cobalt(II), nickel(II) and copper(II) ions, (a) Benesi–Hildebrand plot and (b) detection limit of all metal ions with **TBA3**

Figure S12 Change in absorbance of **TBA4** with increasing concentrations of manganese(II), cobalt(II), nickel(II) and copper(II) ions, (a) Bnesi–Hildebrand plot and (b) detection limit of all metal ions with **TBA4**

LOD and Ka values for all the heavy metals tested

	TBA1		ТВАЗ		TBA4	
	Detectio n Limit x 10 ⁻⁶ M	K _a x 10 ⁶ M ⁻¹	Detectio n Limit x 10 ⁻⁶ M	K _a x 10 ⁶ M ⁻¹	Detectio n Limit x 10 ⁻⁶ M	K _a x 10 ⁶ M ⁻¹
Mn	0.433	1.345	0.566	1.600	0.462	2.025
Со	0.441	3.141	0.388	0.944	0.485	1.841
Ni	0.431	1.792	0.619	0.911	0.471	2.002
Cu	0.468	0.955	0.541	0.484	0.461	0.984

Table S2

1H NMR in presence of metal salts

Figure S13 Proton NMR of TBA1 in presence of 0.25, 0.5, 0.75 and 1.0 mole equivalents of mercuric acetate salt in DMSO-d6

FT-IR in presence of mercuric metal salts

Figure S14 FT-IR of TBA1 in presence of mercuric acetate salt in THF

Figure S15 Rheological behavior of the gels in diesel and trends in tan δ values

Comparative IR spectra of Compound TB1 with xerogel, gel solution phase (solvent used – n-octane)

Figure S16 Comparison of FT-IR spectra between different forms of **TBA1**

Comparative PXRD patterns

Figure S17 Comparative PXRD spectra of TBA1

Crystallographic Parameters

Table S3

Code	TBA4			
Empirical formula	C ₄₈ H ₉₂ N ₄ O ₄			
Formula weight	789.25			
Temperature/K	140.00			
Crystal system	monoclinic			
Space group	P21/c			
a/Å	23.20(3)			
b/Å	10.861(13)			
c/Å	10.066(13)			
α/°	90			
β/°	90.07(4)			
γ/°	90			
Volume/ų	2537(6)			
Z	2			
ρ _{calc} g/cm ³	1.033			
µ/mm ⁻¹	0.064			
F(000)	880.0			
Crystal size/mm ³	0.7 x 0.5 x 0.3			
Radiation	ΜοΚα (λ = 0.71073)			
20 range for data collection/°	4.14 to 50.49			
Index ranges	$-27 \leq h \leq 27, -12 \leq k \leq 12, -11 \leq l \leq 9$			
Reflections collected	14743			
Independent reflections	4443 [Rint = 0.2156, Rsigma =			
	0.2625]			
Data/restraints/parameters	4443/0/260			
Goodness-of-fit on F ²	0.867			
Final R indexes [I>=2σ (I)]	R1 = 0.0771, wR2 = 0.1694			
Final R indexes [all data]	R1 = 0.2538, wR2 = 0.2612			
Largest diff. peak/hole / e Å ⁻³	0.17/-0.17			
CCDC No.	2221607			

Analytical Data

Compound TBA1 (N-(1-phenylethyl)- 3,3-dimethylbutanamide). M.P.= 60°C, ¹H NMR (400 MHz, CDCl₃, TMS) = δ (ppm) 7.766-7.322 (*m*, 5H, 5(CH) ar), δ 5.660 (*s*, 1H, -CONH), δ 5.199-5.051 (*m*, 1H, (CH)), δ 2.063 (*s*, 2H, CH₂), δ 1.579-1.562 (*d*, 1H, CH), δ 1.517-1.499(*d*, 3H, CH₃), 1.040 (*s*, 9H, 3(CH₃)). ¹³C = δ (ppm) 171, 159, 143, 142, 128, 127, 126, 50, 49, 48, 31, 29, 21.

FT-IR, cm⁻¹ (KBr) – 3299, 3062. 3031, 2960, 2808, 1736, 1634, 1545, 1510, 1449, 1393, 1385, 1342, 1263, 1234, 1207, 1145, 1018, 907, 763, 697, 623, 541.

Compound TBA2 (N-(3-ethynylphenyl)-3,3-dimethylbutanamide). M.P.= 98°C, ¹H NMR (400 MHz, CDCl₃, TMS) = δ (ppm) 7.654 (*s*, 1H, (CH) ar), δ 7.572-7.553 (*d*, 1H, (CH) ar), δ 7.299-7.215 (*m*, 2H, 2(CH) ar), δ 3.077 (*s*, 1H, \equiv CH), δ 2.237 (*s*, 2H, CH₂), δ 1.114 (*s*, 9H, 3(CH₃)). ¹³C = δ (ppm) 170, 137, 129, 127, 123, 122, 120, 83, 51, 31, 29.

FT-IR, cm⁻¹ (KBr) – 3431, 3292, 3067, 2961, 2361, 1651, 1580, 1554, 1474, 1419, 1366, 1337, 1277, 1152, 1132, 1041, 976, 954, 885, 793, 763, 690, 665, 633.

Compound TBA3 (N-(1-benzylpiperidin-4-yl)-3,3-dimethylbutanamide). M.P.= 96°C, ¹H NMR (400 MHz, CDCl₃, TMS) = δ (ppm) 7.330-7.264 (*m*, 5H, 5(CH) ar), δ 5.311-5.292 (*d*, 1H, -CONH), δ 3.861-3.786 (*m*, 1H, (CH)), δ 3.500 (*s*, 2H, CH₂)), δ 2.839-2.811 (*d*, 2H, 2(CH₂)), δ 2.149-2.095 (*m*, 2H, 2(CH₂)), δ 2.026 (*s*, 2H, CH₂), δ 1.932-1.905 (*m*, 2H, 2(CH₂)), δ 1.502-1.405 (*m*, 2H, 2(CH₂)), δ 1.031 (*s*, 9H, 3(CH₃)). ¹³C = δ (ppm) 171, 138, 129, 128, 127, 63, 52, 50, 48, 46, 35, 32, 30, 29.

FT-IR, cm⁻¹ (KBr) – 3290, 3082, 3029, 2955, 2866, 2802, 1634, 1554, 1493, 1448, 1393, 1364, 1273, 1245,1201, 1154, 1141, 1092, 1028, 863, 791, 743, 731, 698, 643.

Compound TBA4 (N-cyclohexyl-3,3-dimethylbutanamide). M.P.= 88°C, ¹H NMR (400 MHz, CDCl₃, TMS) = δ (ppm) 5.478 (*s*, 1H, -CONH), δ 3.756-3.713 (*m*, 1H, (CH)), δ 1.987 (*s*, 2H, CH₂), δ 1.898-1.859 (*m*, 2H, 2(CH₂)), δ 1.734-1.380 (*m*, 2H, 2(CH₂)), δ 1.372-1.342 (*m*, 1H, CH₂), δ 1.333-1.101 (*m*, 2H, 2(CH₂)), δ 1.081-1.036 (*m*, 3H, 3(CH₂)), δ 0.997 (*s*, 9H, 3(CH₃)). ¹³C = δ (ppm) 170, 159, 50, 48, 47, 33, 32, 30, 29, 25, 24.

FT-IR, cm⁻¹ (KBr) – 3307, 3077, 2952, 2933, 2853, 1637, 1547, 1447, 1365, 1346, 1300, 1273, 1256, 1239, 1202, 1153, 1100, 993, 891, 719, 622, 554.

Compound TBA5 (N-hexadecyl-3,3-dimethylbutanamide). M.P.= 54°C, ¹H NMR (400 MHz, CDCl₃, TMS) = δ (ppm) 5.431 (*s*, 1H, -CONH), δ 3.261-3.211 (*m*, 2H, CH₂), δ 2.042 (*s*, 2H, CH₂), δ 1.55-1.45 (*m*, 2H, CH₂), δ 1.288-1.258 (*m*, 28H, 14(CH₂)), δ 1.039 (*s*, 9H, 3(CH₃)), δ 0.886 (*t*, 3H, C<u>H₃</u>). ¹³C = δ (ppm) 171, 50, 39, 31, 30, 29.8-29.3, 26.9, 22, 14.

FT-IR, cm⁻¹ (KBr) – 3301, 3062, 2915, 2849, 1633, 1543, 1474, 1393, 1365, 1333, 1265, 1232, 1201, 1145, 1039, 958, 716, 659, 620.

Compound TBA6 (N-dodecyl-3,3-dimethylbutanamide). M.P.= 43°C, ¹H NMR (400 MHz, CDCl₃, TMS) = δ (ppm) 5.409 (*s*, 1H, -CONH), δ 3.264-3.214 (*m*, 2H, CH₂), δ 2.717-2.683 (*m*, 2H, CH₂), δ 2.042 (*s*, 2H, CH₂), δ 1.511-1.264 (*m*, 20H, 10(CH₂)), δ 1.042 (*s*, 9H, 3(CH₃)), δ 0.905-0.871 (*t*, 3H, CH₃). ¹³C = δ (ppm) 171, 50, 42, 39, 33, 31, 30, 29.8-29.2, 26, 22, 14.

FT-IR, cm⁻¹ (KBr) – 3301, 2955, 2919, 2851, 1634, 1544, 1469, 1365, 1344, 1265, 1233, 1149, 817, 718, 663, 619.

TBA1

27

TBA4

TBA3

