
Supplementary information:

Scalloped pattern deposition during

spreading and drying polymer droplets

Ahmed M. Othman1, Andreas. S. Poulos2, Ophelie Torres2, and Alexander. F.

Routh1

1Department of Chemical Engineering and Biotechnology, University of

Cambridge, Philippa Fawcett Dr, Cambridge, CB3 0AS, United Kingdom

2Unilever R&D Port Sunlight, Quarry Road East, Wirral, CH63 3JW, United

Kingdom

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2024



Contents

Viscosity and Shear Rate Behaviour of PVP in Ethanol Solution S�1

Formation of Uniform Thin Film S�2

In�uence of Surface Wettability on the Instability S�3

In�uence of Solvent Evaporation on the Instability S�4

Mathematical Formulation S�5



Viscosity and Shear Rate Behaviour of PVP in Ehanol So-

lution

Fig. S�1 presents the viscosity of a polymer solution composed of polyvinylpyrrolidone (PVP)

in ethanol. The measurements were conducted using a Kinexus Pro+ rheometer with a cup

and bob accessory. Notably, the results reveal a constant viscosity across the range of shear

rates investigated. Within the selected range of shear rates, shear thinning does not appear to

occur, likely because the shear rate is insu�cient.

10
0

10
1

10
2

10
-4

10
-3

10
-2

10
-1

10
0

Fig. S�1: Viscosity as a function of shear rate for di�erent concentrations of 10 kDa PVP in
ethanol solutions measured at 22◦C.
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Formation of Uniform Thin Film

The spreading process of a 1 wt% PVP in ethanol droplet on a glass slide gives rise to the

emergence of a uniform, thin �lm during the initial stages of Marangoni �ow, as shown in

Fig. S�2. This thin �lm exhibits a consistent thickness throughout. It is noteworthy that

the thin �lm is sustained by the main droplet, serving as a �uid reservoir. Findings from a

prior investigation on Marangoni �ow-induced ethanol and water �lms on inclined surfaces have

reported analogous observations.5,18

Fig. S�2: Top-view images taken for a 1 wt% PVP in ethanol droplet deposited on a glass slide
at 22◦C showing the uniform �lm extended from the main droplet.
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In�uence of Surface Wettability on the Instability

Fig. S�3 displays the deposition of PVP in ethanol droplets with varying concentrations on

a polytetra�uoroethylene (PTFE) substrate, captured 60 seconds after deposition. Fig.S�4

presents a side-view image of a 5 wt% PVP in ethanol droplet on a PTFE substrate, demonstrat-

ing the formation of a �nite contact angle. Furthermore, Fig. S�3 and Fig. S�4 demonstrate

the stable nature of the contact line, characterised by the absence of the scalloped pattern.

1 wt% 5 wt% 10 wt%

Fig. S�3: Top-view images of PVP in ethanol drops with di�erent initial concentrations after
60 seconds from deposition on a hydrophobic polytetra�uoroethylene (PFTE) at 22◦C.

Fig. S�4: Side-view image of a 5 wt% PVP in ethanol droplet deposited on a PTFE substrate
captured at di�erent time intervals.
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In�uence of Solvent Evaporation on the Instability

Fig. S�5 presents top-view images depicting the �lm morphology of PVP in ethanol droplets

with various initial polymer concentrations. These images were captured in an environment

saturated with ethanol vapour. Despite the substantial reduction or suppression of evapora-

tion, the observed instability persists at the droplet edge. Furthermore, Table S�1 provides a

comparison of the instability wavelength values resulting from droplet spreading in an ethanol-

saturated environment and under atmospheric conditions.

4 wt% 8 wt% 12 wt%

Fig. S�5: Top-view images of di�erent PVP in ethanol droplets at 22◦C in an ethanol-saturated
conditions to reduce ethanol evaporation from the droplet.

Table S�1: Comparison between instability wavelengths in an ethanol-saturated environment
and under atmospheric environment for di�erent PVP in ethanol droplets deposited on a glass
slide

PVP concentration
Wavelength in an ethanol-saturated

environment

Wavelength in atmospheric

conditions

(wt%) (mm) (mm)

4 0.49 ± 0.09 0.43 ± 0.06

8 0.79 ± 0.16 0.78 ± 0.15

12 1.08 ± 0.21 1.25 ± 0.28
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Mathematical Formulation

Consider a thin droplet containing a dissolved polymer in a single solvent deposited on a solid

�at substrate, as depicted in Fig. S�6a. The �uid density is ρ0, viscosity µ0, initial droplet

height is h∗
0 and radius is R∗

0. For simplicity, a Cartesian coordinate system is used to derive

the relevant equations, where the horizontal coordinate is x, the vertical coordinate is z and the

transverse coordinate is y. The �ow of the droplet is governed by the Navier Stokes equations.

(a) (b)

Fig. S�6: (a) A sketch that shows a droplet on a �at solid substrate with a no-slip boundary
and (b) A sketch showing the associated length scales as a result of droplet spreading due to
solutal Marangoni on a �at solid substrate.

Scaling and Assumptions

The horizontal coordinates are scaled by the radius R∗
0 and the vertical distances by the height

of the droplet h∗
0. The aspect ratio of a thin droplet is ϵ = h∗

0/R
∗
0 < 1. The horizontal velocities

are scaled arbitrarily by u0 and the vertical velocity is scaled by w∗ = ϵu0. Upon scaling, the

Reynolds number, (Re = ρ0u0h
∗
0/µ0), is found to be small, and the lubrication approximation

assumption holds as ϵRe and ϵ2 ≪ 1. Applying the lubrication approximation to the non-

dimensionalised Navier Stokes and continuity equations yields

1

µ

∂P

∂x
=

∂2u

∂z2
, and

1

µ

∂P

∂y
=

∂2v

∂z2
. (1)

The boundary condition at the solid-liquid interface is non-slip, i.e., at z = 0, u = 0 and v = 0.

The tangential shear stress at the air-liquid interface is taken as a constant shear due to the
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solutal surface tension gradient, which only acts horizontally

z = h, µ
∂u

∂z
=

∂γ

∂x
. (2)

The horizontal velocities are determined by integrating equation 1. The height-averaged veloc-

ities denoted as û and v̂, are determined by

û =
1

h

∫ h

0

u dz = −h2

3µ

∂P

∂x
+

1

2µ

∂γ

∂x
h, and v̂ =

1

h

∫ h

0

v dz = −h2

3µ

∂P

∂y
. (3)

The pressure P is determined by the Young-Laplace equation P = −γκ, where γ is the surface

tension and κ is the mean curvature.6,7,14 Within the lubrication approximation, the mean

curvature can be found using di�erential geometry κ = ∇2h.7 The pressure term is

P = −γ∇2h = −γ

(
∂2h

∂x2
+

∂2h

∂y2

)
. (4)

Substituting the pressure term into equation 3, the height averaged velocities are given by

û =
h2

3µ

∂

∂x
(γ∇2h) +

1

2µ

∂γ

∂x
h, and v̂ =

h2

3µ

∂

∂y
(γ∇2h). (5)

Equation 5 describes the two contributions of the horizontal velocity. The �rst describes the

velocity due to curvature and the second contribution is the solutal Marangoni shear stress.

The governing equation of the �lm thickness h can be found using a simple mass balance to get

a time-dependent partial di�erential equation8,13,15

∂h

∂t
= − ∂

∂x
(hû)− ∂

∂y
(hv̂). (6)
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Second Spreading Dynamic

During this regime, the main droplet acts as a �uid reservoir for the extended thin �lm and

replenishes the �uid. Therefore, it is reasonable to assume the extended �lm from the droplet

has a uniform thickness, i.e., evaporation is negligible in this region. Two length scales have

been identi�ed experimentally. The �rst is the uniform thin �lm away from the triple contact

line. The second is near the triple contact line. Various spreading problems were modelled

similarly, where di�erent forces in�uence di�erent length scales,9,11,16 which are represented in

Fig. S�6b.

A new scaling will be used for both length scales, as di�erent forces in�uence each region.

In the region near the droplet meniscus, i.e., region 1, the following scalings are introduced

x̄ =
x

l1
, ȳ =

y

l1
, z̄ =

z

h0

, h̄ =
h

h0

, ū =
û

u0

.

The quantities with overbars are the dimensionless variables. The lubrication approximation

still holds as the thickness of the extended �lm is small h0 ≪ h∗
0. Introducing the scalings to

equation 5 provides

ū =

(
h3
0γ

3µl31u0

)
h̄2 ∂

∂x̄
(∇̄2h̄) +

(
h0

2µu0

∂γ

∂x

)
h̄. (7)

In this region, the curvature term is neglected as (ϵ3γ/3µu0) ≪ 1. The curvature is only

signi�cant at the edge of the thin �lm. Hence, the �ow is driven mainly by a surface tension

gradient, i.e., the solutal Marangoni �ow. The velocity scale u0 will be used to match the

solution to the region near the triple contact line and is given as

u0 =

(
h0

2µ

∂γ

∂x

)
. (8)

The region near the triple contact line is of interest, as this is where the instability occurs. The

curvature term is important as this is where the ridge is occurring, which sets a di�erent length

scale. The scaling in this region is as follows

x̄ =
x

l2
, ȳ =

y

l2
, z̄ =

z

h0

, h̄ =
h

h0

, ū =
û

u0

.
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The length scale of this region is denoted as l2 and can be derived from equation 7 as

l2 = h0

(
γ

3µu0

)1/3

. (9)

Subsequently, the non-dimensional velocities near region 2 are given by

ū = h̄2 ∂

∂x̄
(∇̄2h̄) + h̄, and v̄ = h̄2 ∂

∂ȳ
(∇̄2h̄). (10)

Substituting the resulting velocities into equation 6 yields the governing equation of region 2

near the contact line

∂h̄

∂t̄
= − ∂

∂x̄

(
h̄3 ∂

∂x̄
(∇̄2h̄) + h̄2

)
− ∂

∂ȳ

(
h̄3 ∂

∂ȳ
(∇̄2h̄)

)
. (11)

The base solution for equation 11 is assumed to be independent of the y-coordinate, indicating

that �ow in the transverse direction will not develop any structure. Hence, equation 11 can be

reduced to
∂h̄

∂t̄
= − ∂

∂x̄

(
h̄3 ∂

∂x̄
(∇̄2h̄) + h̄2

)
. (12)

The absence of the evaporation term in equation 12 can be attributed to the underlying assump-

tion that it does not exert any discernible in�uence on the thickness of the uniform �lm. This

assumption is based on our experimental observations, where it has been noted that the parent

droplet compensates for any �uid loss experienced by the thin �lm (in region 1, as depicted

in Fig S�6b), thereby sustaining its uniform thickness. This observation has been reported

previously in binary mixtures evaporating on a tilted substrate.5,18
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Surface Tension Gradient and Marangoni Flow Velocity

At the air-liquid interface, the magnitude of the shear stress due to concentration gradients can

be quanti�ed using the solvent concentration. The dimensional mass balance is given by7,19

∂

∂t
(Ch) = − ∂

∂x
(hCu)− E, (13)

where C is the concentration of the volatile liquid component and E is the evaporation rate.

Within the lubriacation approximation, it is assumed that there is no vertical variation in

concentration, i.e.
∂C

∂z
= 0. It is also assumed that the evaporation rate is uniform across the

droplet, based on the premise that there exists an external velocity �eld to mix any external

air.15 This assumption of a constant evaporation rate is applied to the entire droplet. Hence,

using equation 6, the concentration of the solvent is given by

h
∂C

∂t
= −hu

∂C

∂x
− E. (14)

Assuming the variation of concentration in the extended �lm with time is negligible as the

parent drop continuously replenishes the �lm, the change in volatile liquid concentration as a

function of distance is given by
∂C

∂x
= − E

hu
. (15)

The shear stress at the air-liquid interface can be written as

∂γ

∂x
=

∂γ

∂C

∂C

∂x
. (16)

For the surface tension in the binary mixture, as a function of the volatile liquid composition,

a linear dependence was assumed

∂γ

∂C
=

∇γ

∇C
=

γA − γB
CA − CB

, (17)
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where subscript A refers to ethanol and B to the polymer containing trace water. Using equa-

tions 15 and 17, the shear stress can be obtained as

∂γ

∂x
=

E(γB − γA)

hu(CA − CB)
. (18)

The magnitude of the solutal Marangoni velocity in equation 8 is given by

u0 =

(
E(γB − γA)

2µ(CA − CB)

)1/2

. (19)

Equation 19 represents a constant velocity in the extended thin �lm resulting from solutal

Marangoni shear �ow. This velocity will be used to determine the length scale of region 2.

Boundary and Initial Conditions

Four boundary conditions are needed in order to obtain a solution to equation 12. The length of

the computational domain size is de�ned as Lx. The following boundary conditions are selected

h̄(0, t̄) = 1 h̄(Lx, t̄) = b, and
∂h̄

∂x̄
(0, t̄) =

∂h̄

∂x̄
(Lx̄, t̄) = 0. (20)

Away from the edge and towards region 1, the �lm height is set to unity. Numerical solutions

for a moving contact line lead to a singularity, which occurs as a result of the assumption of

the no-slip boundary condition at z = 0.2 As the contact line advances, a multivalued velocity

�eld at the triple contact line is produced as the liquid replaces air. One approach to treating

the contact line singularity is to assume the solid surface is pre-wetted by a thin layer of �uid,

known as a precursor �lm.11,12,20 Therefore, as x̄ → Lx̄, the boundary condition was selected

to be equal to a precursor �lm that is consistent with complete wetting.4

A hyperbolic tangent function is used to approximate the initial pro�le of the thin �lm h0. This
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function is a smooth curve that connects two di�erent �at regions and is given by11

h0 =
(1 + b)

2
− (1− b)

2
tanh(x− xf ), (21)

where xf is the contact line position in the domain Lx̄. The choice of this initial boundary

condition is arbitrary.

Numerical Results

A second-order �nite di�erence scheme is used, following the method illustrated in Kondic 11 .

The governing equation is therefore linearised using this approximation. A Matlab implicit

solver was used to solve the resulting equations. Fig. S�7a shows an important feature of thin

�lm spreading with a dynamic contact line, which is the occurrence of a capillary ridge close

to the contact line. Fig. S�7b shows the e�ect of di�erent precursor �lm thicknesses on the

front ridge. It is noticed that by reducing the precursor thickness, the ridge appears to be more

pronounced than with a larger precursor thickness value.

Travelling Wave Solution

After an initial period, the �ow pro�le develops into a travelling wave with constant speed, as

shown in Fig. S�7a. A coordinate transformation is used to de�ne the solution of this travelling

wave. A moving frame is selected ξ = x̄− ct̄ where c is the wave speed and H0(ξ) = h̄(x̄, t̄) is

the �lm thickness.

The new coordinates are substituted into equation 12 yielding

−c
∂H0

∂ξ
= − ∂

∂ξ

[
H0

(
∂3H0

∂ξ3

)
+H2

0

]
. (22)
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Fig. S�7: (a) Time evolution of a thin liquid �lm spreading on a horizontal substrate at di�erent
time intervals (dt̄ = 4) with a precursor thickness b = 0.1 and a domain length of Lx = 50 and
(b) Numerical solution for a thin �lm spreading pro�le on a horizontal substrate at di�erent
times and di�erent precursor �lm thicknesses.

Linear Stability Analysis

A linear stability analysis is performed to investigate the stability of PVP in ethanol droplets. As

experimentally shown, undulations occur in the �lm after the initial spreading in the transverse

direction. To capture this, a small perturbation is introduced in the y direction to the travelling

wave solution, yielding

H(ξ, ȳ, t̄) = H0(ξ) + ςH1(ξ, ȳ, t̄), (23)

where H0(ξ) is the base solution obtained from equation 22 and ςH1(ξ, y, t) is the small per-

turbation. Substituting equation 23 into the height governing equation 11 and retaining terms

of O(ς), linearises the governing equation 11 and gives a fourth-order equation in terms of the

perturbation H1

∂H1

∂t̄
= − ∂

∂ξ

[
2H0H1 +H3

0

∂3H1

∂ξ3
+H3

0

∂3H1

∂y2∂ξ
+ 3H2

0H1
∂3H0

∂ξ3

]
− ∂

∂y

[
H3

0

∂3H1

∂ξ2∂y
+ h3

0

∂3H1

∂y3

]
+ c

∂H1

∂ξ
. (24)

Equation 24 can be simpli�ed by expressing the perturbation term as H1 = H1(ξ, t̄) exp
iκȳ.1,11,17

Substituting into equation 24, the evolution of the perturbation can be expressed as
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∂H1

∂t̄
= −

4∑
i=0

AiH1
i, (25)

where A is a linear operator given as

A0 =

[
∂H0

2∂ξ
+ 3

∂H2
0

∂ξ

∂3H0

∂ξ3
+ 3H2

0

∂4H0

∂ξ4
+H3

0κ
4

]
, A1 =

[
2H0 −

∂H3
0

∂ξ
κ2 + 3H2

0

∂3H0

∂ξ3
− c

]
,

A2 = [−2H3
0κ

2] , A3 =

[
∂H3

0

∂ξ

]
, A4 = [H3

0 ] ,

and κ represents the perturbation wavenumber in the transverse direction. The perturbation

far away from the edge of the �uid is decaying; hence, four boundary conditions are used to

solve equation 25

H1,
∂H1

∂ξ
→ 0 as ξ → +∞,

H1,
∂H1

∂ξ
→ 0 as ξ → −∞.

(26)

The perturbation equation can be solved using a second-order �nite di�erence method in a

domain between [0, L]. The perturbation solution H1 is assumed to have an exponential depen-

dence with time and is given by11

H1(ξ, t̄) = ϕ(ξ)eωt̄, (27)

where ω is the growth rate of the perturbation. The growth rate ω determines the stability of

the contact line. If the value of ω > 0 then the perturbations grow with time; if the value of

ω < 0 then the perturbations decay and the contact line is stable.

As it can be seen from Fig. S�8, the system is unstable to disturbances with a wavenumber

between 0 < κ ≤ 0.55. The in�uence of the precursor �lm is small, as the most unsta-

ble wavelength ranges from κ = 0.35 to 0.38 for di�erent values of b. This is similar to the

wavenumbers found in a steady-state Marangoni �ow that is driven by thermal gradients on

a vertical substrate.3,9,10 The most unstable wavelength that will be compared to the experi-

mental observation corresponds to κ = 0.37. The dimensionless wavelength can be calculated
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Fig. S�8: The dimensionless growth rate as a function of the wavenumber for di�erent precursor
�lm thicknesses.

according to λ̄ = 2π/κ. The dimensional wavelength is scaled by the region 2 length scale,

hence λ = 17h0

(
γ

3µu0

)1/3

.
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