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Home build stretching device 

 
On each side, a clamp holds the foil elevated above the frame. The clamps are two steel blocks 
screwed together. The sides facing the foil are sandblasted to avoid slipping of the foil, which 
is especially crucial when using thick or multiple stacked foils. Foils were either clamped 
completely or just to the middle of the clamps. The clamps can be moved apart by turning the 
handle of a brass spindle connecting the clamps. Multiple lengths of the stretching device 
were built to handle different lengths of stretched foils. 
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Foils after stretching 

The rectangular foil pieces of e.g. 8 × 4 cm, were marked with 5 mm squares. After stretching, 
the middle part in-between the 1.5 cm lines (1st line next to the black one) from the clamped 
sides is stretched equally and therefore used to recover the particles. A pencil was used for 
marking the inner part, as it can be erased after stretching, while a normally used permanent 
marker cannot be erased after heating and therefore colours the particles. 

The 1.5 cm distance to the 1st inner pencil line is sufficient to account for the necking behaviour 
of the film at 150 °C (bone shape, Figure S2 A and B). In between these parts, the width does 
not strongly decrease any further. Ho et al.1 inferred that necking could be lower at higher 
temperatures. This was confirmed when an intermediate metal block was implemented on a 
long stretching device (Figure S2C). The part above this block stayed wider than the rest, 
leading to uneven stretching, especially when aiming for a higher aspect ratio. Such a design 
of the stretching device should, therefore, be avoided. 
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Analysis of DLS data from spherical particles 

The spherical particles (PS spheres, embedded and embedded & heated) were studied by 
angle-dependent DLS. Figure S3A shows exemplary intensity-time autocorrelation functions 
measured at a scattering angle q = 20 °. Monomodal decays are observed for all three samples 
and the correlation functions nearly overlap. The inflection points, that roughly correspond to 
the relaxation times, are very similar between different samples. Slight mismatches between 
the correlation functions are mostly related to the differences in intercept, b. Figures S3B-D 
shows the diffusion analysis in terms of relaxation rates G determined from cumulant analysis2 
as a function of the squared magnitude of the scattering vector. The solid lines are linear fits 
to the data with fixed intercept of zero. As expected for isotropic, homogeneous objects purely 
translational motion is probed in the respective range of q. Consequently, the slopes of the 
linear fits correspond to the translational diffusion coefficients DT: 

  𝐷! =
"
#!

 (eq. S1) 
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Figure S3. A Intensity-time autocorrelation functions from DLS measurements at q = 20° from 
PS spheres (black), embedded (green) and embedded & heated (light pink). Relaxation rates G 
from cumulant analysis as a function of the squared magnitude of the scattering vector for PS 
spheres (B), embedded particles (C) and embedded & heated particles (D). The results shown 
correspond to scattering angles q of 20 – 90 °. The colour code for the different samples is the 
same as in the main manuscript. The solid lines represent linear fits to the data where the 
intercept was fixed to zero.  
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Hydrodynamic radii Rh were calculated from values of DT using the Stokes-Einstein equation: 

  𝐷! =
$"%
&'()#

 (eq. S2) 

Here, kB is the Boltzmann constant, T the absolute temperature and h refers to the dynamic 
viscosity of the surrounding medium, i.e. water in our case with a value of 0.89 mPas at 298.15 
K. The respective results (Rh) are listed in Table 2 in the main manuscript. 
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Analysis of DLS and DDLS data from non-spherical particles (Ellipsoids) 

The autocorrelation functions from standard DLS (VV polarization) and from DDLS (VH 
polarization) can be described as follows: 

 𝑔**
(,)(𝑞, 𝜏) = 𝑆.	𝑒𝑥𝑝(−𝐷%𝑞/𝜏) + 𝑆/	𝑒𝑥𝑝(−(𝐷%𝑞/ + 6𝐷))𝜏)  (eq. S3) 

 𝑔*0
(/)(𝑞, 𝜏) − 1 = 𝛽 exp(−2(𝑞/𝐷% + 6𝐷))𝜏)  (eq. S4) 

Here, t is the delay time, DT and DR are the translational and rotational diffusion coefficients 
and S1 and S2 are scaling coefficients. While for slender bodies where 𝑞𝑙 < 5 correlation 
functions from DLS (VV) are expected to be single exponentials with only contributions from 
translational motion (S2 = 0), for 5 < 𝑞𝑙 < 10 higher order modes become relevant and 
correlation functions are expected to be bimodal. The q-range in our light scattering 
experiments corresponding to scattering angles of 20 – 140 ° is 0.0046 – 0.0248 nm-1. Our 
prolate spheroids with 𝑙 ranging from 556 to 901 nm (value from SEM) strictly only met the 
condition 𝑞𝑙 < 5 at small scattering angles.   

Figure S4 and S5 show representative autocorrelation functions from DLS (S5) and DDLS 
measurements (S4) performed at q = 20 °. The solid lines correspond to the respective fits 
based on eq. S3 and eq. S4, respectively.  
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Figure S4. Field-time autocorrelation functions from DLS measurements (VV) at 20 ° for the 
2:1 Ellipsoids (A), the 3:1 Ellipsoids (B) and the 4:1 Ellipsoids (C). Solid lines are respective fits 
to the data.  
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The fits match the experimental data, and all correlation functions appear monomodal. For 
the DLS data (Figure S5) recorded at q = 20 ° 𝑞𝑙 < 5 is fulfilled, and therefore the correlation 
functions should be dominated by the translational diffusion. At larger scattering angles, it is 
expected that the higher-order modes become relevant (S2 ≠ 0). Therefore, we first analyze 
the DLS data as suggested by Nixon-Luke and Bryant3. Figure S6 shows field-time 
autocorrelation functions from DLS measurements (VV) of the three samples (Ellipsoids) over 
the whole angular range (20 – 140 °) in 10 ° steps and plotted over 𝑞/𝜏. At large scattering 
angles (towards the red), the functions become multimodal and shift towards larger decay 
times.  

    

 

Figure S7 shows the same data as Figure S6 but only for a selected range of angles (20 – 70 °) 
where the correlation functions collapse onto a mastercurve at larger decay times where the 
component from translational diffusion is expected to be dominant. For this range of angles, 
the determination of DT is expected to be reliable.3 It is worth noting that the correlation 
functions also overlap nicely at small decay times. This is different compared to data from DLS 
measurements on smaller anisotropic objects e.g. gold nanorods where the rotational 
diffusion coefficient DR is significantly larger.4 
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Figure S5. Intensity-time autocorrelation functions from DDLS measurements (VH) at 20 ° for 
the 2:1 Ellipsoids (A), the 3:1 Ellipsoids (B) and the 4:1 Ellipsoids (C). Solid lines are respective 
fits to the data.  

Figure S6. Field-time autocorrelation functions 𝑔$$
(&) plotted against q2τ for scattering angles 

from 20 - 140° in 10 ° steps for 2:1 Ellipsoids (A), for 3:1 Ellipsoids (B) and 4:1 Ellipsoids (C). The 
scattering angle increases from violet to red in each diagram.  
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The correlation functions shown in Figure S7 were then used to extract values of DT by fitting 
the data with the above-mentioned equation S3 for 𝑔**

(,)(𝑞, 𝜏).  

    

The obtained values of DT were then used as fixed input parameters to fit the correlation 
functions from DDLS using the equation S4 for 𝑔*0

(/)(𝑞, 𝜏) to determine the rotational 
diffusion coefficients DR.  

Figure S8 summarizes the results of the obtained DT and DR in dependence of q. Please note 
that the range of q used is the same corresponding to scattering angles of 20 – 70 ° while the 
DDLS data were measured in angular increments of 5 °. The solid lines correspond to the q-
averaged mean values. 

 

 

In addition to the analysis procedure of DLS/DDLS data from Nixon-Luke and Bryant, we used 
the more “standard” analysis where relaxation rates are analysed in dependence of q2. This 
seems well justified at least for the range of angles plotted in Figure S7 where all correlation 
functions appear monomodal. Similar to the procedure used above, DLS data are used to 
extract DT, which can then be used to extract DR from DDLS data: 
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Figure S8. Translational (A) and rotational (B) diffusion coefficients from combined analysis of 
DLS and DDLS data in dependence of q for the different samples. Solid lines correspond to 
linear fits with slope zero, i.e. the average values. 

Figure S7. Selected 𝑔$$
(&) plotted against q2τ only showing the angles from 20 – 70° where the 

long-time decay fully collapses onto a master curve for 2:1 Ellipsoids (A), for 3:1 Ellipsoids (B) 
and 4:1 Ellipsoids (C). The scattering angle increases from violet to light blue.  
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  Γ123 = 𝑞/𝐷! (eq. S5) 
 
  Γ1123 = 𝑞/𝐷! + 6𝐷4  (eq. S6) 
 

The respective relaxation rates G were determined by cumulant analysis of the measured DLS 
and DDLS data. Figure S9 shows the respective results as a function of q2. 

  

 

Figure S9A shows the expected linear scaling for translational diffusion over the whole range 
of plotted angles (20 – 90°) for the 2:1 Ellipsoids (green) and the 3:1 Ellipsoids (purple). At 
larger scattering angles than 90 ° the relaxation times start to scatter significantly with 
pronounced deviations from the linear behavior and, therefore, these data were not included 
in the analysis. For the 4:1 Ellipsoids (orange), the linear scaling is best at low angles and 
deviations towards larger angles (60 – 90 °) are observed. For the smaller particles the linear 
scaling is well fulfilled even to scattering angles of 90 °, i.e. slightly larger than the range in 
Figure S7. The same trend is observed in Figure S9B where the slopes of the linear fits were 
fixed using the values of DT determined from the analysis in Figure S9A. The fits nicely match 
the data for the two shorter Ellipsoids while significant deviations are found for the 4:1 
Ellipsoids, in particular at larger values of q2, i.e. larger scattering angles. Here the same range 
of angles (20 – 70 °) was used as in our previous DDLS analysis. Table S1 summarizes the results 
from this analysis in direct comparison to the results from the analysis according to Nixon-
Luke and Bryant and to theoretical values obtained from a model of prolate spheroids (Perrin) 
using the particle dimensions obtained from SEM analysis (see table 1 in the main manuscript). 
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Figure S9. Relaxation rates from cumulant analysis of DLS (A) and DDLS data (B) plotted as a 
function of the squared magnitude of the scattering vector. Shown are data for scattering 
angles of 20 – 90 ° (A) and 20 – 70 ° (B). Solid lines represent linear fits to the data. In A the 
intercept was fixed to zero. In B the linear fits were performed with fixed slopes (DT) as 
obtained from the linear fitting shown in A. 
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Table S1. Diffusion coefficients from different analysis of DLS and DDLS data in comparison to calculated values 
using the theory of prolate spheroids (Perrin). 

Sample Cumulant (standard) Nixon-Luke Theory 
 DT,DLS [µm²/s] DR [s-1] DT [µm2/s] DR [s-1] DT [µm/s] DR [s-1] 

2:1 1.37 ± 0.02 21.4 ± 0.24 1.46 ± 0.01 22.0 ± 0.4 1.40 25 
3:1 1.36 ± 0.01 16.8 ± 0.37 1.46 ± 0.02 14.6 ±	0.3 1.30 16 
4:1 1.14 ± 0.02 12.1 ± 0.16 1.31 ± 0.01 11.5 ± 0.3 1.19 10 

 

The results from the two different analysis procedures of the DLS and DDLS data differ 
stronger than their (small) standard variations in all cases. Stronger deviations are found for 
values of DT. Nevertheless, the values are in quite good agreement. Overall, the values from 
“standard” analysis match better to the theoretical prediction. Therefore, those values are 
discussed in the main text.  
We can also treat the DDLS data independently from the DLS data and fit the data shown in 
Figure S9 without values of DT as fixed input parameters for the slope.5 
Figure S10 shows the respective data with linear fits using slope and intercept as variable 
fitting parameters. 

 

Table S2. Diffusion coefficients from independent analysis of DLS and DDLS based on relaxation rates obtained 
from cumulant analysis. 

Sample Cumulant (standard) 
 DT,DLS [µm²/s] DT,DDLS [µm²/s] DR [s-1] 

2:1 1.37 ± 0.02 1.24 ± 0.05 22.7 ± 0.6 
3:1 1.36 ± 0.01 1.50 ± 0.03 15.3 ± 0.4 
4:1 1.14 ± 0.02 1.55	± 0.03 10.4 ± 0.2 

 

While the values of DR from this independent analysis are close to the ones for the two other 
analysis as reported in Table S1, values of DT deviate significantly. Importantly, values from 
the DDLS data, DT,DDLS, increase with increasing aspect ratio which is the opposite of what is 
expected.   
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Figure S10. Relaxation rates from cumulant analysis DDLS data plotted as a function of the 
squared magnitude of the scattering vector. Shown are data for scattering angles of 20 – 90 °. 
Solid lines represent linear fits to the data 
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Evaluating different samples 

Inter-sample reproducibility is given, as the average aspect ratio does not change much with 
the different stretched foil samples. It was, therefore, possible to merge the samples. 

  

 

 

  

Figure S11. Boxplots of the different samples and their aspect ratio and size distribution of 
the merged batches (“Together”). 
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Formulas used for calculating the corresponding sphere 

For an ellipsoid, the formula of basic math has three different axis-radii (x, y, z). If we alter just 
one dimension (x; stretching direction), two of those radii will remain the same (y = z).  

  𝑉 = 5
6
𝜋(𝑥	 ∙ 𝑦/)  (eq. S7) 

To calculate the volume of the corresponding sphere, we have to use the basic math formula 
for a sphere: 

  𝑉 = 5
6
𝜋𝑟6  (eq. S8) 

From the SEM images we can identify x as half of the length 𝑙 and y as half of the width 𝑤. To 
calculate the diameter	𝑑 of the corresponding sphere, the above-mentioned formula can be 
combined with the length	𝑙 and width 𝑤	of the particle to 

  𝑑 = 2	 ∙ (𝑥	 ∙ 𝑦/)
(
) =	2	 ∙ C7

/
	 ∙ D8

/
E
/
F
(
)
  (eq. S9) 

The error is then calculated by error propagation 

  ∆𝑑 = HIJ,
6
∙ D8

7
E
!
)K ∙ ∆𝑙L

/

+ IJ/
6
∙ D 7

8
E
(
)K ∙ ∆𝑤L

/

 (eq. S10) 
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Flow Field Fractionation (FFF) 

Additional graphs of the FFF measurements. 
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Figure S12. The on-line UV-VIS detector of A the pristine spherical particles before embedding 
in comparison to a B embedded and a C embedded & heated sample. 

Figure S13. UV signal for the A just embedded, B 1 hot-wash treated and C 3 hot-wash treated 
spherical particle samples. One can identify that with increasing particle concentration in the 
foil (from 2 to 6 wt%) most samples show more agglomerates. 

 


