Electronic Supplementary Information (ESI) for

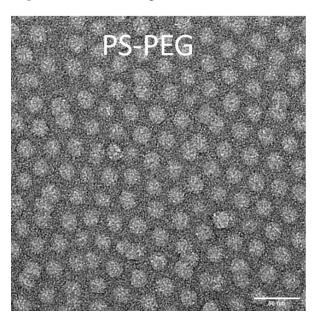
Effect of Temperature on the Air-Water Surface Mechanical Behavior of Water-Spread

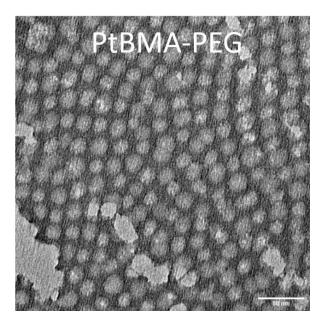
Block Copolymer Micelles

Daniel J. Fesenmeier,¹ Seyoung Kim,^{1,2} You-Yeon Won^{1,3,*}

¹ Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA

² Department of Polymer Science and Engineering, Dankook University, Yongin, Gyeonggi 16890,


Republic of Korea


³ Purdue University Institute for Cancer Research, West Lafayette, IN 47907, USA

* Corresponding author. Email: yywon@purdue.edu

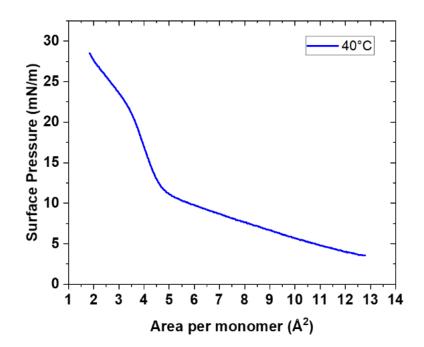
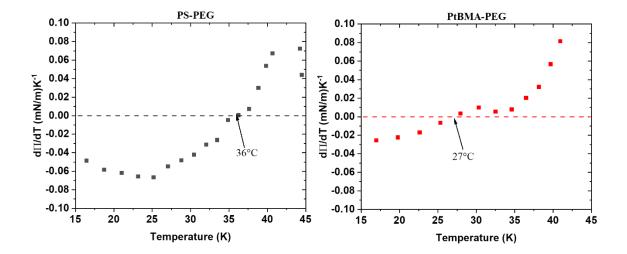

Keywords: amphiphilic block copolymer micelle, Langmuir monolayer, surface pressure–area isotherm, poly(styrene)–poly(ethylene glycol), Brewster angle microscopy, glass transition

Figure S1: TEM images for PS-PEG and PtBMA-PEG micelles



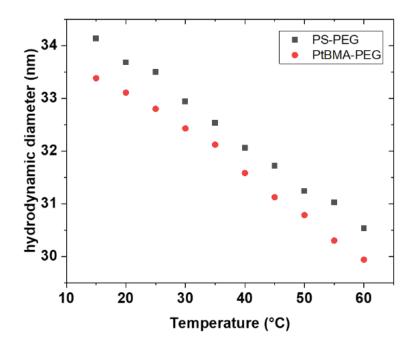

Figure S2: Surface pressure-area isotherm plotted in terms of area per PtBMA monomer unit for isotherm conducted at 40°C. Spreading was done using 50 μ L of 5 mg/mL of PtBMA-PEG aqueous micelle solution and compression speed was 30 mm/min.

Figure S3: The first derivate of surface pressure with respect to temperature obtained from heating of monolayer compressed to 25 mN/m at constant area for water-spread PS-PEG and PtBMA-PEG micelle solutions shown in Figure 7 of the main text. The core $T_{g,SP}$ is estimated by interportation of the temperature at which the first derivative is equal to zero.

Figure S4: DLS hydrodynamic diameter as a function of temperature for PS-PEG and PtBMA-PEG micelles in water at 1 mg/mL.

