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1. [Au(6-tGH)2]Cl  characterisation data 

 

Figure S1: Electrospray mass spectrometry (ESI-MS) in positive ion mode of [Au(6-tGH)2]+(aq) (top) 
experimental data and (bottom) predicted spectrum. 



 

Figure S2: Experimental PXRD of [Au(6-tGH)2]Cl (red line) compared to the PXRD pattern calculated from 
the crystal structure (black line). 

 

  



2. Vesicles 

 

 

Figure S3: Two in situ AFM images at 1 mM of [Au(6-tGH)2]Cl showing the vesicles (bright spots), fibres 
and the molecular strands forming between vesicles (examples indicated by red arrows in image (b)).  

  



3. Lamellae and crystals 

 

Figure S4:  Scanning electron micrograph (SEM) of a xerogel obtained from a freeze-dried gel of [Au(6-
tGH)2]Cl (1). Formed at (a) 2 mM and (b) 6 mM. At the lower concentration (2 mM) fibres are observed. 
At higher concentrations (6 mM) mainly sheets rather than fibres are observed. 

 

 

Figure S5: SEM images of films of [Au(6-tGH)2]Cl made by addition of an equal volume of acetone to a 10 
mM gel. Lamellae and crystals are observed. 

 



 

Figure S6: (a) PXRD of c = 10 mM [Au(6-tGH)2]Cl xerogels. (1) Xerogel before freeze drying; (2) after freeze 
drying; (3) further drying under vacuum for one week and (4) after drying under vacuum for two weeks. 
(b) The xerogel made by freeze drying and two weeks of vacuum drying (black line) compared to PXRD for 
the oxidation product of the reducing agent used to prepare Au(I); 2,2-sulfinyldiethanol. The three most 
intense peaks from the 2,2-sulfinyldiethanol pattern are indicated by green arrows. 

 

 

 

Figure S7: PXRD of isopropanol grown crystals (red line) and the predicted PXRD from the crystal structure 
(black line). Inset: the isopropanol crystal PXRD on a larger scale with the peaks corresponding to (001); 
(002); (020) and (003) reflections labeled.  

 



 

Figure S8: The crystal planes (001) and (011). 

 

 

Figure S9: Olex2 images of the crystal structure of 1. (a) a view normal to the cb plane of the unit cell 
that shows the chain alignment in the crystal. (b) A view normal to the ac plane of the unit cell showing 
the chain stacking. 

 

 



 

 

Figure S10: Vapor diffusion setup for crystallization of 1 on silicon chips. The blue antisolvent (acetone 
or isopropanol) diffuses slowly in to the inner vial where the gel (yellow) and the silicon (brown line) are. 
After a few days (acetone) or a few weeks (isopropanol) crystals start to form (grey dots) in the gel. The 
silicon can then be removed and analyzed using AFM to observe the crystal growth. The remaining 
crystals can be left to grow and then analyzed using XRD.   

 

 

 

Figure S11: AFM images of c = 5 mM [Au(6-tGH)2]Cl on silicon. Acetone was vapour-diffused into the 
sample as the antisolvent. (a) individual fibres and rigid, needle-shaped crystals. (b) crystals (top left) 
forming on top of the gel, visible in the background as a dense network of fibres. 

 



 

Figure S12: (a) Photographs showing the transformation from gel to crystals (left to right) during vapor 
diffusion of acetone into a 10 mM gel. (b) Optical micrograph of the crystals of 1 at 40x magnification. 

 

  



4. Gelation 

 

 

Figure S13: Inversion test on a 4 mM aqueous sample of [Au(6-tGH)2]Cl: (a) before, (b) during, and (c) 
after heating. 

(a) Sample at room temperature in the gel state. 

(b) The sample heated to 100oC and in the liquid state. 

(c) The sample after cooling for 48 h to room temperature. Gel has reformed. 

  



 

Figure S14: Rheological study of a 10 mM sample 24 h after preparation. (a) Time sweep (frequency = 1 
Hz); (b) frequency sweep; (c) amplitude (torque) sweep and (d) viscosity against shear rate.  



5. NMR spectroscopy

 

Figure S15:  1H NMR of a 4.5 mM sample of [Au(6-tGH)2]Cl in D2O recorded on a 500 MHz instrument at 
(a) 298 K, (b) 333 K, (c) 353 K, and (d) 363 K. 

 

 



 

Figure S16: 1H NMR of 4.5 mM sample of [Au(6-tGH)2]Cl in D2O recorded on a 500 MHz at 363 K with 
proton assignments to molecule.  

 

 

Figure S17: COSY spectrum of 4.5 mM sample of [Au(6-tGH)2]Cl in D2O recorded on a 500 MHz instrument 
at 363 K with the correlations of sugar protons indicated.  
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Figure S18: 1H–13C HSQC data for 4.5 mM sample of [Au(6-tGH)2]Cl in D2O recorded on a 500 MHz 
instrument at 363 K. 

 

Figure S19: (a) The four peaks from the oxidation product of the reducing agent (2,2’-sulfinyldiethanol), 
used to prepare Au(I), show prominently in the 1H NMR of a 4.5 mM sample in D2O recorded on a 500 
MHz at 298 K. (b) 1H NMR of the reactant mixture from the first step of the coordination reaction in D2O 
recorded on a 500 MHz instrument: chloroauric acid (HAuCl4) and 2,2’-thiodiglycol. These form Au(I) and 
2,2’-sulfinyldiethanol which can sometimes be crystallised under alternative crystallisation conditions. 
The four peaks from the oxidation product of the reducing agent, 2,2’-sulfinyldiethanol remain sharp at 
298 K confirming that it is not part of the supramolecular structure of [Au(6-tGH)2]Cl, 1.  



 

Figure S20: COSY spectrum of 4.5 mM sample of [Au(6-tGH)2]Cl in D2O recorded on a 500 MHz at 363 K 
with correlations of protons from 2,2’-sulfinyldiethanol indicated.  



6. Optical spectroscopy

 

Figure S21: UV-Vis absorption spectra. (a) 6-thioG 60 µM (blue line) and after addition of Au(I) (orange 
line). The ligand:metal stoichiometry is 2:1. (b) both ligand 6-thioG (blue line) and [Au(6-tGH)2]Cl (orange 
line) at a concentration of 60 µM. 6-thioG λmax = 344 nm, ε = 2.0 x 104 M-1cm-1. [Au(6-tGH)2]Cl λmax = 344 
nm, ε = 1.8 x 104 M-1cm-1. The results of a TD-DFT calculation of the vertical excitation energies and 
oscillator strengths for [Au(6-tGH)2]+ are shown in black. The calculation used the B3LYP functional with 
the 6-31G(d,p) basis set for the non-metal atoms and the LanL2DZ basis set for Au. 

 

 

Figure S22: Excitation and emission spectra of 1 at 5 µM concentration. The excitation wavelength was 
λexc = 300 nm for the emission spectrum and the emission wavelength λem = 440 nm for the excitation 
spectrum. 



 

 

Figure S23: Model of 1 monomers in the vesicle wall. The red areas indicate the hydrophilic sugar groups 
which form the wetted internal and external surfaces. The blue areas indicate the hydrophobic 
nucleobases and yellow indicates the Au ions. The alignment of the Au ions facilitates aurophilic 
interactions. 

 

 

Figure S24: Calculated CD spectrum of monomeric [Au(6-tGH)2]+ using the B3LYP functional and the 6-
31G(d,p) basis set for the non-metallic atoms and the LanL2DZ basis set for Au (dashed black line). 
Experimental CD data for [Au(6-tGH)2]Cl just under the gel point at 1 mM (red line).  



 

 

 

Figure S25: CD spectra at different temperatures. (a) 3 mM of [Au(6-tGH)2]Cl at room temperature, about 
290K (blue line) and at 333 K (grey line). (b) ellipticity at 390 nm for samples at 2.5, 3.0 and 3.5 mM 
concentrations of aqueous [Au(6-tGH)2]Cl. (c) Heat-cool cycle for a 4 mM gel sample. The black line is the 
spectrum of the gel at 20oC before heating, the red line shows the spectrum recorded at 70oC and the 
blue line shows the spectrum after cooling to 20oC for 8 h. 

 

 

 

 

 

 



 

Figure S26: Luminescence decay curves below and above the minimum gelation concentration (mgc). (a) 
Vesicles of 0.5 mM (1) below the mgc (λexc = 375 nm, λem = 560 nm); (b) the gel at 4 mM (λexc = 375 nm, 
λem = 490 nm) and (c) the distribution of lifetimes extracted from the fits to the decay curves. 

 

 

 

 

Figure S27: (a) Circular dichroism spectra and (b) absorbance spectra of [Au(6-tGH)2]Cl gels at a 
concentration of 3 mM in isopropanol/water mixtures. The colour scale indicates the volume percentage 
of isopropanol.  

 

  



7. Evidence of the chloride ion effect on gelation 

 

Figure S28: Difference between the storage (G') and loss (G') moduli for gels prepared from a 4 mM 
sample of [Au(6-tGH)2]Cl with the addition of excess NaCl. The concentration of NaCl is reported as 
equivalents in terms of Au. The storage and loss moduli were measured at 1 Hz frequency and the mean 
values over a period of 176 s are shown. A linear correlation of this measure of stiffness with equivalents 
of chloride observed (r2 = 0.91). 

 

 

Figure S29: Discrete particles of gel formed when NaCl is added to a dilute (0.1-0.2 mM) sample of [Au(6-
tGH)2]Cl . Photograph taken under illumination by an Hg lamp.  



8. Au-S bond lengths for coordinated thione and thiolate ligands 

Thione (C=S) 

In the crystal structure of 1,  [Au(6-tGH)2]Cl, the carbon-sulfur distances are 1.701(12) and 1.726(13) Å.  

On searching the CCDC for similar structures with linear coordination of sulfur to gold there are 99 hits. 

 

Of these 47 have been assigned to thione C=S 1-25 

 

Of the 47 which have been assigned to the thione forms, the range of bond lengths is 1.653-1.779 Å with 
a mean bond length of 1.721 Å.  

 
Thiolate (C-S)  

  
24 examples of single bond C-S that were not thiocyanates and could be clearly assigned as thiolate 
forms were found. 26-37 In this sample, the range of thiolate C-S bond lengths is 1.712-1.844 Å and the 
mean bond length is 1.772 Å.  
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