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Ambiente y Enerǵıa (INQUIMAE). Pabellón 2, Ciudad Universitaria, C1428, Ciudad

Autónoma de Buenos Aires, Argentina.

E-mail: mario@qi.fcen.uba.ar,yperezsirkin@qi.fcen.uba.ar

Extremization of the semi-grand canonical free energy

functional

We find the extreme the Lagrangian functional given by the semi-grand canonical free energy

of the system and the constraints enforced through the use of Lagrange multipliers (Eq. 20

in the main text) with respect to the following functions: ρi(r), Pi(αi, r) and fk
j (r). The

extreme with respect to the density distribution of solvent results in the expression,
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ρs(r) = ρbulks exp
[
−βvs

(
π(r)− πbulk

)]
(S1)

where ρbulks is the density of the solvent in the bulk.1

The extreme with respect to respect the density distribution of the mobile species i =

H+,OH−,K+,Cl−, results in:

ρi(r) = ρbulki exp
{
−βqi

[
ψ(r)− ψbulk

]
− βvi

[
π(r)− πbulk

]}
(S2)

The bulk potential, ψbulk, is set to zero hereafter. For the probability distribution function

of molecular conformations Pi(αi, r) the final expression is:

Pcopol(αcopol, r) = Qcopol(r)
−1 exp

[
−
∑

k=A,N

∫
ncopol,k(r

′, αcopol, r)vpβπ(r
′)dr′

−
∫
ncopol,A(r

′, αcopol, r)

(
ln(fA

c (r
′)) + βψ(r′)qA−

)]
dr′

(S3)

Pguest(αguest, r) = Qguest(r)
−1 exp

[
−
∫
nguest,B(r

′, αguest, r)

(
ln(fB

c (r
′))+βψ(r′)qB−+vpβπ(r

′)

)]
dr′

(S4)

where Qi(r) = exp(1 + ξi(r)/[G(r)ρi(r)]).

The minimization with respect to the fraction of segments in different states, fA
j for

copolymer A segments (with j = c, uc, A-B, A-ion) and fB
j for guest B segments (with

j = c, uc, A-B, B-ion) results in the expressions of the acid-base equilibrium and the copoly-

mer/guest, salt-ion/copolymer and salt-ion/guest ion-pairing equilibria.

The acid-base equilibrium of the A groups in the copolymer (Eq. 2 in the main text) is

given by:
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Kθ
A =

fA
c (r)ρH+(r)

fA
uc(r)ρs(r)

(S5)

where Kθ
A = exp(−β∆Gθ

A) = exp
[
−β(µθ

H+ + µθ,A
c − µθ,A

uc )
]
is the thermodynamic equi-

librium constant of the acid-base reaction.

In analogy, the acid-base equilibrium of the base groups of the guest molecule (8) is,

Kθ
B =

fB
c (r)ρOH−(r)

fB
uc(r)ρs(r)

(S6)

where Kθ
B = exp(−β∆Gθ

B) = exp
[
−β(µθ

OH− + µθ,B
c − µθ,B

uc )
]
.

The thermodynamic constants Kθ
A and Kθ

B are related to the equilibrium constants in

molar reference states by dividing them by a factor c0NAvs/(10
24 nm3/dm3), where c0 is the

standard concentration (1 M) and NA is Avogadro’s number.

The equilibrium reaction for ion pairing between copolymer A segments and salt cations

(Eq. 4 in the main text) is given by:

Kθ
A-ion =

fA
A-ion(r)(ρs(r)vs)

vK+/vs

fA
c (r)ρK+(r)vs

(S7)

where Kθ
A-ion = exp

[
β(µθ

K+ + µθ,A
c − µθ,A

A-ion)
]
. The equation for ion pairing between anions

and B segments in the guest molecule (Eq. 5 in the main text) is:

Kθ
B-ion =

fB
B-ion(r)(ρs(r)vs)

vCl−/vs

fB
c (r)ρCl−(r)vs

(S8)

where Kθ
B-ion = exp

[
β(µθ

Cl−
+ µθ,B

c − µθ,B
B−ion)

]
.

In the dilute limit (ρbulks vs → 1), the thermodynamic constants Kθ
A-ion and Kθ

B-ion can be

transformed to association constants using molar concentrations by multiplication by c0NAvs

/(1024 nm3/dm3).

The association equilibrium between copolymer and guest segments (Eq. 1 in the main

text) is
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Kθ
A-BvAB =

fA
A-B(r)

fA
c (r)f

B
c (r)⟨nB(r)⟩

=
fB
A-B(r)

fA
c (r)f

B
c (r)⟨nA(r)⟩

(S9)

where Kθ
A-B = exp

[
β(µθ,A

A-B + µθ,B
A-B − µθ,A

c − µθ,B
c )
]

Once again, it is possible to obtain the association constant in the molar reference state,

KA-B , as KA-B = Kθ
A-B vABc0NA/(10

24 nm3/dm3).

The functional extreme respect to the electrostatic potential, ψ(r), results in

∇ · (ϵ∇ψ(r)) = −⟨ρq(r)⟩ (S10)

Eq. S10 is a mean-field Poisson equation for electrostatics, where the electrostatic po-

tential and the number density of charges are replaced by their ensemble averages. The

boundary conditions for this equation are ψ(r → ∞) = 0 (bulk) and symmetric conditions

(null derivative) at r = 0:

∂ψ(r)

∂r


r=0

= 0 (S11)

Additional information on the derivation and solving of the molecular theory (MOLT)

can be found in our previous publication of amphiphile assemblies2–4 and polyelectrolyte

complexes.5,6

Discretization and numerical solving

The set of Eqs. S1-S10 is solved by discretizing these equations and the packing constraint

(Eq. 16 in the main text) in a grid along the r-direction, using layers of thickness δ = 0.2

nm. The set of resulting non-linear equations is solved numerically using a Jacobian-free

Newton method.7
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Calculation of the radii of the core and the micelle from the volume-

fraction profiles of the segments

We use the volume-fraction profiles of each type of segment ⟨ϕA(r)⟩, ⟨ϕB(r)⟩ and ⟨ϕN(r)⟩ to

calculate the core and total radius of the C3Ms from MOLT. In the case of core radius Rcore,

we first sum the volume fractions of the charged segments to obtain the volume fraction

profile of the core ⟨ϕcore(r)⟩ = ⟨ϕA(r)⟩ + ⟨ϕB(r)⟩. We then obtain Rcore from the equimolar

dividing surface using a definition of that is typically used in molecular dynamic simulations

to determine the radii of droplets.8 More specifically, Rcore is given by:

Rcore =

[
1

⟨ϕcore⟩r<Rcore − ⟨ϕcore⟩r>Rcore

∫ +∞

0

r3
d⟨ϕcore(r)⟩

dr
dr

]1/3
(S12)

where we used ⟨ϕcore⟩r>Rcore = max ⟨ϕcore(r)⟩ and ⟨ϕcore⟩r<Rcore−⟨ϕcore⟩r>Rcore = −⟨ϕcore⟩r>Rcore .

The derivative and integral in Eq. S12 were evaluated numerically in the whole calculation

box.

The total radius of the micelles RH was obtained from the distribution of the neutral

monomers ⟨ϕN(r)⟩. Once again, we used the equimolar surface at RH , defined by Equation

S12.

Effect of the length of the guest molecule on the struc-

ture of C3Ms

Figure S1 shows the effect of varying the length of the guest molecule (z) on the radii of

the micelle and the core, keeping constant the length of the copolymer blocks. The ratio of

copolymer to guest molecules was varied in order to ensure a 1:1 stoichoimetry between A

and B blocks. The small scaling exponents obtained by fitting the experimental results (0.03

and 0.05, see Figure) are consistent with the nearly-zero scaling exponents experimentally

found by Marras et al. for polyglutamic and DNA guest molecules combined with different
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PEG-poly(lysine) diblock copolymers.9

Figure S1: Effect of the length of the guest molecule B (for a fixed length of the charged
block of the copolymer, A, and a 1:1 A:B fixed global stoichiometry on the radius of the
micelle (left panel) and the core (right panel). Calculation parameters: length of the acidic
copolymer block x = 20 and length of the neutral copolymer block y = 20.
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