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Acoustic emission
Acoustic emission (AE) is a phenomenon that occurs when a 
material undergoes deformation and/or fracture. It is caused by 
the rapid release of elastic energy that is stored in the material 
due to mechanical loading. The elastic energy release is linked 
to the onset and propagation of cracks in soft solids and can be 
described by various fracture mechanics models.
Acoustic emission (AE) has shown great potential in providing 
insights into the mechanical behaviour of soft solids undergoing 
deformation and/or rupture. However, there are several 
challenges associated with linking AE to friction and rupture in 
these materials.
One of the primary challenges is accurately interpreting the AE 
signals and distinguishing between different types of events - 
and mathematical models attempting linkage are scarce. AE 
signals can arise from a variety of sources, including 
microcracking, plastic deformation, and frictional sliding. The 
challenge lies in differentiating between these sources and 
identifying the underlying physical processes that give rise to 
the signals. This is further complicated by the highly 
heterogeneous nature of many soft solids, with variations in 
material properties and microstructure across different regions 
of the material.
Another challenge is the attenuation of AE signals as they 
propagate through the material. Soft solids have lower acoustic 
velocities and higher attenuation coefficients than more rigid 
materials, which can make it difficult to detect signals from 
deep within the material.
Selecting an appropriate fracture mechanics model to relate AE 
to friction and rupture is also challenging. Different models have 
different assumptions and limitations and may be more or less 
appropriate depending on the specific material and loading 
conditions. Careful experimental validation is required to 
ensure that the selected model accurately represents the 
underlying physics.
One such model is the Kaiser effect model, which assumes that 
the AE signal is proportional to the cumulative release of elastic 
energy during the deformation process. The Kaiser effect states 
that the AE signal is independent of the loading history up to 
the point of AE detection, and that it only depends on the 
amount of energy released during that specific deformation 
event 14–16. Mathematically, the Kaiser effect can be expressed 
as:

∆𝐴𝐸 = 𝑓(𝐺)
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Equation 1

where  is the change in AE signal, and   is the elastic ∆𝐴𝐸 𝐺
energy release rate associated with the fracture or deformation 
event. The function  is dependent on the specific material 𝑓(𝐺)
properties and the type of deformation or fracture being 
considered.

Another model that links AE to elastic energy release and 
fracture in soft solids is the Continuum Damage Mechanics 
(CDM) model. This model describes the evolution of damage in 
the material as a scalar variable (D), which represents the 
degree of loss of material integrity due to microcracking or 
other forms of deformation. The elastic energy release rate in 
the CDM model can be expressed as:

𝐺 =
𝐸
𝜋

𝑎
𝑊

[(1 ‒ 𝐷)∆𝜎]2

Equation 2

where E is the elastic modulus of the material, is the crack 𝑎
length,  is the width of the crack,  is the stress intensity 𝑊 ∆𝜎
factor, and  represents the remaining intact material. This 1 ‒ 𝐷
equation relates the amount of elastic energy released during 
deformation or fracture to the degree of damage in the 
material.

“Soft Solids” from an elastic perspective
Soft solids, also known as visco-elastic materials, represent an 
intriguing class of substances to the scientific community as 
their mechanical properties lie between those of traditional 
rigid solids and viscous fluids. These materials exhibit both solid-
like characteristics, such as maintaining their overall shape, and 
liquid-like behaviour, allowing for significant deformations 
under applied stress 17. 
The deformation behaviour of soft solids is typically quantified 
by the stress-strain relationship, which describes how the 
material responds to external mechanical forces. In the case of 
linearly elastic materials, Hooke's law relates stress, σ, and 
strain, ε, through a constant called the elastic modulus, E:

𝜎 =  𝐸 · 𝜀

Equation 3

The elastic modulus signifies the material's stiffness and how 
resistant it is to deformation. 
However, for soft solids, this relationship can become non-
linear at larger strains due to the rearrangement and 
interactions of their microstructures. Non-linear models, such 
as the Ogden or neo-Hookean models, are employed to 
describe their stress-strain behaviour more accurately.
The Ogden model 18 is based on the strain energy density 
function, W, which describes the energy stored in a material 
due to deformation. For soft solids, the Ogden model is given 
by:

𝑊 =  ∑[(2𝜇𝑖

𝛼𝑖
)· (𝜆

𝛼𝑖
1 +  𝜆

𝛼𝑖
2 +  𝜆

𝛼𝑖
3 ‒  3)] 

Equation 4

Where μi and αi are material-specific parameters and λ1, λ2, and 
λ3 are the principal stretches of the material.

The Ogden model can accommodate the complex stress-strain 
behaviour observed in soft solids, making it suitable for a wide 
range of applications in biomedical engineering, soft robotics, 
and material design.
However, for practical reasons, the neo-Hookean model is often 
used as it is a simpler representation of the non-linear 
behaviour of soft solids 19. It is particularly useful for materials 
that exhibit nearly incompressible behaviour. The neo-Hookean 
model is expressed as:

𝑊 =  (𝜇
2) · (𝜆1

2  +  𝜆2
2 +  𝜆3

2 ‒  3)

Equation 5

Where μ is the shear modulus.
The neo-Hookean model provides a good approximation for 
small to moderate deformations in soft solids and has been 
widely used in engineering towards certain microstructure 
properties.
One of the distinctive characteristics of soft solids is their visco-
elastic behaviour, which combines features of viscosity and 
elasticity. When subjected to stress, soft solids exhibit time-
dependent responses. The relaxation modulus, G(t), is a 
fundamental parameter in characterizing visco-elasticity. It 
quantifies the material's ability to relax and dissipate stress over 
time, indicating the gradual return to its original state after 
deformation.
Mathematically, the relaxation modulus is related to the stress 
relaxation function, R(t), representing the stress decay with 
time, through the Laplace transform:

𝐺(𝑡) =  ∫𝑅(𝑡) 𝑑𝑡

Equation 6

The stress relaxation function relies on the material's internal 
dynamics, which are often influenced by the arrangement and 
interactions of its constituents, such as polymer chains, colloidal 
particles, or biological fibres.
Soft solids also exhibit creep behaviour, which refers to their 
time-dependent deformation under a constant applied stress. 
The creep compliance, J(t), characterises the material's strain 
response over time when subjected to constant stress.
Like the relaxation modulus, the creep compliance is related to 
the creep compliance function, C(t), representing the strain 
development with time under constant stress, through the 
Laplace transform:
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𝐽(𝑡) =  ∫𝐶(𝑡) 𝑑𝑡

Equation 7

Creep can have significant implications in engineering 
applications where materials must withstand prolonged loads, 
as in building foundations or visco-elastic damping materials 20.
Rheology is a crucial aspect of soft solids, dealing with their flow 
and deformation behaviour. Soft solids' visco-elastic nature 
leads to complex flow responses, particularly under oscillatory 
stress. The complex viscosity, η*, is a key parameter in rheology, 
representing the material's resistance to flow 21

The complex viscosity comprises two components: the storage 
modulus, η', characterising the elastic response of the material, 
and the loss modulus, η", representing the viscous response.

𝜂 ∗  =  𝜂' +  𝑖𝜂"

Equation 8

The storage modulus represents the material's ability to store 
and recover elastic energy, while the loss modulus accounts for 
the dissipation of energy as heat during deformation.

Ultrasound and “Soft Solids”
Ultrasound waves are mechanical waves that propagate 
through a medium, including soft matter foods, by transferring 
energy through particle oscillations. These waves exhibit 
longitudinal compressional behaviour, where particles vibrate 
parallel to the direction of wave propagation. In the case of soft 
matter foods, these particles represent the constituents of the 
material, such as water, oil, or protein molecules.
The behaviour of mechanical waves, including ultrasound, is 
governed by the wave equation, which describes how the 
wave's amplitude evolves over both time and space. For one-
dimensional wave propagation, the wave equation can be 
expressed as:

∂2𝑢

∂𝑡2
‒

𝑐2∂2𝑢

∂𝑥2
=  0

Equation 9

In this equation, represents the displacement of particles at 𝜉(𝑥,𝑡)

position x and time t. The first term, , represents the acceleration 

∂2𝜉

∂𝑡2

of particles over time, and the second term, , represents the 

𝑐2∂2𝜉

∂𝑥2

curvature of the wavefront in space. The constant c is the speed of 
sound in the medium, which depends on the material's properties, 
such as density and compressibility.

For soft matter foods, which are typically visco-elastic, the wave 
equation can be modified to incorporate the effects of visco-
elasticity. The generalised wave equation becomes:

∂2𝜉

∂𝑡2
‒

𝑐2∂2𝜉

∂𝑥2
=  𝜂

∂𝜉
∂𝑡

+
𝜂'∂2𝜉

∂𝑡2

Equation 10

In this modified equation, η and η' represent the damping 
coefficients that characterise the visco-elastic behaviour of the 
material. These coefficients account for the energy dissipation 
and the delayed response of the material to mechanical 
perturbations.
When ultrasound waves propagate through a soft matter 
(food), they interact with its microstructure, leading to changes 
in wave behaviour. As the ultrasound waves encounter 
interfaces between different phases within the food, such as 
solid-gel or liquid-air interfaces, reflections and refractions 
occur due to acoustic impedance mismatches. This acoustic 
impedance, Z, at an interface between two media is defined as 
the product of the material's density, ρ, and the speed of sound, 
c,:

𝑍 =  𝜌 · 𝑐

Equation 11

The variation in acoustic impedance at interfaces causes echoes 
and can be utilised for ultrasound imaging techniques like 
tomography, allowing the visualisation of the soft matter food's 
internal microstructure.
In addition to impedance mismatches, ultrasound waves 
experience attenuation as they traverse through the soft matter 
food. This attenuation is due to various phenomena, including 
scattering, absorption, and visco-elasticity. 
Scattering occurs when the waves encounter in-homogeneities 
or microstructural elements within the soft matter food, 
causing changes in the direction of wave propagation. 
Scattering of (ultra)sound in soft matter involves the 
superposition of the incident and scattered waves, where the 
scattered wave's amplitude is determined by the scattering 
potential and the wave vector.
In the below we consider the case of one-dimensional wave 
propagation through soft matter:
The incident ultrasound wave can be represented as:

𝑃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝑥, 𝑡) =  𝑃0 · 𝑒[𝑖(𝑘𝑥 ‒  𝜔𝑡)]

Equation 12

Where P0 is the initial amplitude of the incident wave, k is the 
wave vector, x is the spatial position, t is time, and ω is the 
angular frequency.
Upon interacting with inhomogeneities or microstructural 
elements, the incident wave undergoes scattering, resulting in 
the generation of scattered waves. The scattered ultrasound 
wave can be expressed as:

𝑃𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑(𝑥,𝑡) =  𝐴 · 𝑒𝑖(𝑘𝑥 ‒  𝜔𝑡 +  𝜑)

Equation 13



ARTICLE Soft Matter

4 | Soft Matter., 2023, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

Where A is the amplitude of the scattered wave, and φ is the 
phase shift introduced during scattering.
The total ultrasound wave at a specific point in space and time, 
considering both the incident and scattered waves, can be 
expressed as the superposition of these waves:

𝑃𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) =  𝑃𝑖𝑛𝑐𝑖𝑑𝑒𝑛(𝑥, 𝑡) +  𝑃𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑(𝑥, 𝑡)

Equation 14

Considering now the scattering cross-section, σ, of the 
inhomogeneity or microstructural element. The scattering 
cross-section represents the measure of the probability of 
scattering and is related to the scattering amplitude, A, as 
follows:

𝜎𝑠 =  |𝐴|2

Equation 15

The scattering amplitude can be further expressed in terms of 
the scattering potential, V, and the wave vector, k, as:

𝐴 =  ‒ (2𝜋
𝑘 )· 𝑉

Where the wave vector is defined as a function of 
wavelength   as𝜆

𝑘 =
2𝜋
𝜆

Equation 16

Incorporating the scattering amplitude into the total ultrasound 
wave expression we arrive at:

𝑃𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) =  𝑃0 · 𝑒[𝑖(𝑘𝑥 ‒  𝜔𝑡)] ‒  (2𝜋
𝑘 )· 𝑉 · 𝑒[𝑖(𝑘𝑥 ‒  𝜔𝑡 +  𝜑)]

Equation 17

Absorption involves the conversion of ultrasound energy into 
heat as it interacts with the constituents of the material. Visco-
elastic properties of soft matter foods also contribute to 
attenuation, with energy being dissipated as the waves interact 
with the material's structure.
Absorption of ultrasound in soft matter occurs when the 
ultrasound waves interact with the constituents of the material, 
leading to the conversion of ultrasound energy into heat. 
Continuing with a one-dimensional wave propagation of 
ultrasound through soft matter, the incident ultrasound wave 
can be represented as:

𝑃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝑥, 𝑡) =  𝑃0· 𝑒𝑖[(𝑘𝑥 ‒ 𝜔𝑡)]

Equation 18

During propagation, the ultrasound wave interacts with the 
constituents of the soft matter, such as water molecules, 
proteins, and other molecules. This interaction leads to the 
dissipation of ultrasound energy. The rate of absorption of 
ultrasound energy can be quantified using the absorption 

coefficient, α, which represents the fraction of ultrasound 
energy absorbed per unit distance travelled in the soft matter.
The change in acoustic pressure, ΔP, due to absorption as the 
ultrasound wave travels through a small distance dx in the soft 
matter can be described as:

Δ𝑃 =  ‒ 𝛼 · 𝑃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝑥,𝑡)· 𝑑𝑥

Equation 19

where  represents the energy absorbed per 𝛼 · 𝑃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝑥, 𝑡)

unit distance traveled.
The total absorption effect along the entire propagation path is 
determined by the integration of the change in acoustic 
pressure over the distance, Δx, through the soft matter:

∫Δ𝑃 =  ∫ ‒ 𝛼 · 𝑃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝑥, 𝑡)· 𝑑𝑥

Equation 20

Integrating from the initial position, x0, to the current position, 
x, we arrive at:

𝑃𝑡𝑜𝑡𝑎𝑙(𝑥,𝑡) =  𝑃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝑥0,𝑡) ‒  𝛼 · (𝑃0/(𝑖 · 𝑘)) · [𝑒𝑖(𝑘𝑥 ‒  𝜔𝑡) ‒  𝑒
𝑖(𝑘𝑥0 ‒  𝜔𝑡)]

Equation 21

Integrating from the initial position, x0, to the current position, 
x, we arrive at:

𝑃𝑡𝑜𝑡𝑎𝑙(𝑥,𝑡) =  𝑃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝑥0,𝑡) ‒  𝛼 · (𝑃0/(𝑖 · 𝑘)) · [𝑒𝑖(𝑘𝑥 ‒  𝜔𝑡) ‒  𝑒
𝑖(𝑘𝑥0 ‒  𝜔𝑡)]

Equation 22

Applied to the incident wave over the specified distance:

𝑥

∫
𝑥0

𝑃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝑥, 𝑡)· 𝑑𝑥 =  𝑃0· 
𝑥

∫
𝑥0

𝑒𝑖[(𝑘𝑥 ‒ 𝜔𝑡)]· 𝑑𝑥

Equation 23

This integral evaluates to:

𝑥

∫
𝑥0

𝑃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝑥, 𝑡)· 𝑑𝑥 =  (𝑃0/(𝑖 · 𝑘)) · [𝑒𝑖(𝑘𝑥 ‒  𝜔𝑡)] | [𝑥0𝑡𝑜 𝑥]

Equation 24

𝑥

∫
𝑥0

𝑃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝑥, 𝑡)· 𝑑𝑥 =  (𝑃0/(𝑖 · 𝑘)) · [𝑒𝑖(𝑘𝑥 ‒  𝜔𝑡) ‒  𝑒
𝑖(𝑘𝑥0 ‒  𝜔𝑡)]

Equation 25

Substituting this expression back into the previous equation, we 
receive:
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𝑃𝑡𝑜𝑡𝑎𝑙(𝑥,𝑡) ‒ 𝑃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝑥0,𝑡) =  ‒ 𝛼 · (𝑃0/(𝑖 · 𝑘)) · [𝑒𝑖(𝑘𝑥 ‒  𝜔𝑡) ‒  𝑒
𝑖(𝑘𝑥0 ‒  𝜔𝑡)]

Equation 26

Rearranging the equation to solve for the total acoustic 
pressure :𝑃𝑡𝑜𝑡𝑎𝑙(𝑥,𝑡)

𝑃𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) =  𝑃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡(𝑥0, 𝑡) ‒ 𝛼 · (𝑃0/(𝑖 · 𝑘)) · [𝑒𝑖(𝑘𝑥 ‒  𝜔𝑡) ‒  𝑒
𝑖(𝑘𝑥0 ‒  𝜔𝑡)]

Equation 27

With this, we have described the absorption of ultrasound 
energy within the context of soft matter using the absorption 
coefficient (α). The attenuation of ultrasound waves can be 
modelled by the attenuation equation:

∂𝑃
∂𝑥

+  𝛼 · 𝑃 =  0

Equation 28

In this equation,  represents the spatial gradient of the 

∂𝑃
∂𝑥

acoustic pressure, and α is the attenuation coefficient, 
quantifying the rate of ultrasound intensity reduction as it 
propagates through the soft matter food. The detailed nature 
of the ultrasound attenuation coefficient is addressed in the 
next section.
We conclude that the behaviour of mechanical waves, 
particularly ultrasound, is governed by the wave equation. This 
fundamental equation accounts for the propagation of waves in 
both time and space, incorporating terms related to 
acceleration and wave-front curvature. To address visco-elastic 
behaviour, modifications are made to the wave equation, 
including the inclusion of damping coefficients. When 
ultrasound waves traverse through soft matter foods, they 
interact with the intricate microstructure, leading to 
phenomena such as reflections, refractions, and echoes due to 
impedance mismatches. However, these waves also experience 
attenuation due to several factors, including scattering, 
absorption, and the visco-elastic properties of the material 
itself. Scattering arises as waves encounter in-homogeneities or 
microstructural elements, causing directional changes in wave 
propagation. Mathematically, the incident and scattered 
ultrasound waves can be precisely represented through 
expressions involving amplitudes, phase shifts, and wave 
vectors. The scattering cross-section and amplitude play a 
significant role, connected to the scattering potential and wave 
vector. As ultrasound energy interacts with the material's 
constituents, it undergoes absorption, converting into heat. The 
absorption coefficient, a crucial parameter, quantifies the 
fraction of energy absorbed per unit distance travelled in the 
soft matter. To model the total acoustic pressure accounting for 
absorption, the attenuation equation comes into play, featuring 
the attenuation coefficient to describe the ultrasound intensity 
reduction during propagation.

We now derive a mathematical relationship appropriate for the 
elastic behaviour of soft solid in which retardation plays a 
central role and then show that this general relationship 
contains the appropriate behaviour in the limits of an elastic 
solid and a Newtonian fluid. We stress the importance of the 
generally ignored bulk viscosity and discuss its measurement. 
We then illustrate the use of these relationships. Other 
approaches to this problem involve empirical or semi-empirical 
descriptions of viscosity and yield stress 22 which are not 
discussed further in this paper.
The strain tensor (strain is change in dimension divided by the 
original dimension resulting from a stress defined as force on 
the point of strain resulting from the surrounding material) is:

𝑆'𝑖𝑗 =
1
2(∂𝜉𝑖

∂𝑥𝑗
+

∂𝜉𝑗

∂𝑥𝑖
)

Equation 29

Where  is the displacement of a volume element.𝜉
 is the time derivative of the strain tensor (The strain rate 𝑆̇'𝑖𝑗

tensor):

𝑆̇'𝑖𝑗 = (∂𝑣𝑖

∂𝑥𝑗
+

∂𝑣𝑗

∂𝑥𝑖
)

whose velocity components are the time derivative of 
displacement:

𝑣𝑖 =
∂𝜉𝑖

∂𝑡

And the velocity vector v is defined in terms of the unit vectors 
i, j 
and k:

𝑣 = 𝑖𝑣𝑥 + 𝑗𝑣𝑦 + 𝑘𝑣𝑧

Equation 30

The stress tensor, P, can be related to the strain tensor in a way 
which connects current stresses to the deformation history 23. 
This is also called ‘retardation’ because there is a time lag (t’) 
arising from the deformation history.

P = 𝑝𝛿𝑖𝑗 ‒
𝑡

∫
‒ ∞

[𝐵̃(𝑡 ‒ 𝑡') ‒
2
3

𝐺(𝑡 ‒ 𝑡')]Ṡ(𝑡')𝛿𝑖𝑗𝑑𝑡' ‒ 2
𝑡

∫
‒ ∞

𝐺(𝑡 ‒ 𝑡')𝑆̇(𝑡')𝛿𝑡'

Equation 31

Here  is the time dependent bulk modulus from which the 𝐵̃(𝑡)
reciprocal of the adiabatic compressibility, B, is absent, and G(t) is 
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the time-dependent shear modulus. dij is the Kronecker delta symbol, 
which has the value   when i=j and   when .𝛿𝑖𝑗 = 1 𝛿𝑖𝑗 = 0 𝑖 ≠ 𝑗

To obtain solid-like behaviour, we set 

𝐵̃(𝑡) = (𝜆 +
2
3

𝜇)ℎ(𝑡)

Equation 32

(𝑡) = 𝜇ℎ(𝑡)

Equation 33

where h(t) is the Heavyside step function,  and  are the Lamé 𝜆 𝜇
constants.
We can now write the individual components of the stress 
tensor, P, in terms of the Lamé constants:

𝑃𝑖𝑗 =‒ (𝜆 +
2
3

𝜇)𝑇𝑟(𝑆'
𝑖𝑗)𝛿𝑖𝑗 ‒ 2𝜇𝑆𝑖𝑗

          = (𝜆 +
2
3

𝜇)𝑆𝛿𝑖𝑗 ‒ 2𝜇𝑆'
𝑖𝑗 +

2
3

𝜇𝑆𝛿𝑖𝑗

= 𝜆𝑆𝛿𝑖𝑗 ‒ 2𝜇𝑆'
𝑖𝑗                        

Equation 34

here S is the trace of the strain tensor S’, the traceless strain 
tensor  is:𝑆𝑖𝑗

𝑆𝑖𝑗 = 𝑆'𝑖𝑗 ‒
1
3

𝑆𝛿𝑖𝑗

Equation 35

Allegra and Hawley (1972)24 use the transformation 
 to obtain the behaviour of the liquid  from the 𝐺 = 𝜇→ ‒ 𝑖𝜔𝜂

stress tensor for the solid using the shear viscosity hs . This 
ignores the bulk viscosity, hB, and is not general enough to apply 
to many visco-elastic (soft solid) liquids such as polymers which 
exhibit relaxation effects. Equation 33 on the other hand, is 
general enough to account for relaxation effects as well as more 
complex behaviours.
For the case of a Newtonian liquid, we choose:

𝐵̃(𝑡) = 𝜂𝐵𝛿(𝑇)

𝐺(𝑡) = 𝜂𝑠𝛿(𝑇)

Equation 36

we then obtain the stress tensor for liquid-like behaviour:

P =‒ 𝑝𝛿𝑖𝑗 + (𝜂𝐵 ‒
2
3

𝜂𝑠)𝑆̇𝛿𝑖𝑗 + 2𝜂𝑠𝑆̇'

Equation 37

which is written in terms of the strain-rate tensor and agrees 
with the stress tensor in Epstein and Carhart (1953), Batchelor 
(1967) and Morse and Ingard (1968).

Ignoring relaxation effects (the  in Equation 31) which 𝐵̃(𝑡 ‒ 𝑡')
may be important in polymers, gives the principal stress as: 

𝑝 =
1
3

𝑇𝑟(𝑃) =‒ (𝜆 +
2
3

𝜇)𝑆 =‒ 𝐵𝑆

Equation 38

The principal stress p is simply the hydrostatic pressure, and the 
equation relates pressure to the fractional change in volume, S, 
through the bulk modulus, B. This equation also relates the 
Lamé constants to the bulk modulus in the case of a solid. 

Note here once again the importance of the bulk viscosity (also 
called the longitudinal viscosity 25) which is measured either 
using ultrasound spectroscopy 26 or Brillouin scattering 25. This 
mathematical treatment raises the prospect of a unified 
experimental measurement approach which combines 
acoustical, textural, and rheological methods to provide a more 
complete description of the behaviour of soft solid foods.



Electronic supplementary information - Characterising the mechanical properties of soft 
solids through acoustics and rheology, exemplified by anhydrous milk fat.

Please do not adjust margins

Please do not adjust margins


