- Supporting Information -

Self-Organization of Metallo-Supramolecular Polymer Networks by

Free Formation of Pyridine–Phenanthroline Heteroleptic

Complexes

Mostafa Ahmadi, Cora Sprenger, Gerard Pareras, Albert Poater, Sebastian Seiffert

Figure S1. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of tetraEPhen20k along with the stoichiometric amount of maleic acid as the external standard.

Figure S2. ¹H NMR spectra (400 MHz, DMSO-*d*₆) of tetraPy20k along with maleic acid as the external

standard added 9 times of the equilibrium.

Figure S3. Shear stress mater-curves of tetraPy(40)Py(X) samples series (symbols) and the corresponding fit of the generalized Maxwell modes (curves) for (a) X = 1, (b) X = 2, (c) X = 4, and (d) X = 6.

Figure S4. Shear stress mater-curves of tetraEPhen(40)Fe(X) samples series (symbols) and the corresponding fit of the generalized Maxwell modes (curves) for (a) X = 2, (b) X = 4, and (c) X = 6.

Figure S5. Shear stress mater-curves of tetraEPhen(40)Pd(X) samples series (symbols) and the corresponding

fit of the generalized Maxwell modes (curves) for (a) X = 2, (b) X = 3, (c) X = 4, (d) X = 5, and (e) X = 6.

Figure S6. Shear stress mater-curves of (a) tetraEPhen(20)Fe(2) and (b) tetraEPhen(20)Pd(2).

Figure S7. Shear modulus of mixed tetraPy/tetraEPhen networks (symbols) and the corresponding fit of the generalized Maxwell modes (curves) at EPhen:Fe²⁺ = 1, 25 °C, and varying Py:EPhen ratios of (a) 1:1, (b) 2:1, (c) 3:1, and (d) 4:1.

Figure S8. Shear modulus of mixed tetraPy/tetraEPhen networks (symbols) and the corresponding fit of the generalized Maxwell modes (curves) at EPhen:Pd²⁺ = 1, 25 °C, and varying Py:EPhen ratios of (a) 1:1, (b) 2:1, (c) 3:1, and (d) 4:1.

Figure S9. Shear modulus of mixed tetraPy/tetraEPhen networks (symbols) and the corresponding fit of the generalized Maxwell modes (curves) at Py:EPhen = 1:1, 25 °C, and varying EPhen:Fe²⁺ ratios: (a) X = 8, (b) X = 7, (c) X = 6, (d) X = 5, (e) X = 4, (f) X = 3, (g) and X = 2.

Figure S10. Shear modulus of mixed tetraPy/tetraEPhen networks (symbols) and the corresponding fit of the generalized Maxwell modes (curves) at Py:EPhen = 2:1, 25 °C, and varying EPhen:Pd²⁺ ratios: (a) X = 8, (b) X = 7, (c) X = 6, (d) X = 5, (e) X = 4, (f) X = 3, (g) X = 2, and (h) X = 1.

Figure S11. Activation energies obtained from time-temperature superposition of shear moduli of parent and mixed networks in the presence of (a) Fe²⁺ and (b) Pd²⁺.

	Fe	Со	Ni	Cu	Zn	Pd
M(Py) ₁	1.0	-5.0	-54.9	-17.2	-3.2	-89.0
M(Py) ₂	-29.2	-7.9	-74.5	-27.5	-7.6	-114.1
M(Py) ₃	-3.8	-19.3	-95.0	-35.0	-9.9	-140.3
M(Py) ₄	-10.5	-19.5	-108.1	-41.8	-12.1	-161.7
M(Py) ₆	-13.7	-15.5	-114.1	-29.0	1.7	-151.9
M(EPhen) ₁	-12.4	-20.2	-85.5	-21.2	-11.1	-128.1
M(EPhen) ₂	-26.1	-33.9	-126.4	-59.3	-27.6	-173.3
M(EPhen)₃	-46.2	-55.0	-154.6	-61.2	-32.5	-167.0
M(EPhen)(Py)	3.3	-26.2	-105.2	-45.0	-18.1	-148.4
M(EPhen)(Py) ₂	-17.7	-35.1	-120.6	-51.1	-18.9	-172.6
M(EPhen) ₂ (Py) ₂	-30.0	-43.2	-142.6	-52.0	-22.4	-160.0

Table S1. Complexation energies in kcal mol^{-1} relative to the free metal ions (M^{2+}).*

$$* E_{Complexation} = E_{Complex} - \left(E_{Organics} + E_{M^{2}}\right)$$

Table S2. Complexation energies in kcal mol⁻¹ of the metal ions (M²⁺) relative to the metal ions (M²⁺)

included	in	the	М		•	salts.*
menudeu		une	141	1103/	2	sans.

	Fe	Со	Ni	Cu	Zn	Pd
M(Py) ₁	14.8	10.2	30.4	19.7	3.9	39.5
M(Py) ₂	-15.5	7.3	10.8	9.3	-0.5	14.4
M(Py) ₃	10.0	-4.1	-9.7	1.9	-2.8	-11.8
M(Py) ₄	3.3	-4.2	-22.8	-4.9	-5.0	-33.2
M(Py) ₆	10.1	-0.3	-28.8	7.9	8.8	-23.3
M(EPhen) ₁	1.4	-4.9	-0.2	15.7	-4.0	0.4
M(EPhen) ₂	-12.3	-18.6	-41.1	-22.4	-20.5	-44.8
M(EPhen) ₃	-32.5	-39.8	-69.3	-24.3	-25.4	-38.5
M(EPhen)(Py)	17.1	-11.0	-19.9	-8.1	-11.0	-19.9
M(EPhen)(Py) ₂	-3.9	-19.9	-35.3	-14.3	-11.8	-44.1
M(EPhen) ₂ (Py) ₂	-16.2	-28.0	-57.3	-15.2	-15.3	-31.5

 $* E_{Complexation} = E_{Complex} - (E_{Organics} + E_{InterSalt}), E_{InterSalt} = E_{Salt} - (E_{Couterion} + E_{M^{2}})$

Fe	Qui	M(Py) ₁	1.901					
	Qui	M(Py) ₂	1.930					
	Qui	M(Py) ₃	1.987					
	Qui	M(Py) ₄	2.034	2.032	2.033	2.034		
	Qui	M(Py) ₆	2.289	2.211	2.211	2.206		
	Qui	M(EPhen) ₁	1.990	1.993				
	Qui	M(EPhen) ₂	2.021	2.035	2.022	2.034		
	S	M(EPhen)₃	1.955	1.950	1.955	1.948	1.956	1.950
	Qui	M(EPhen)(Py)	2.022	2.029	1.967			
	Qui	M(EPhen)(Py) ₂	2.055	2.056	2.010	2.010		
	S	M(EPhen) ₂ (Py) ₂	1.967	1.949	1.967	1.949	2.009	2.009
Со	Qua	M(Py) ₁	1.860					
	Qua	M(Py) ₂	1.894					
	Qua	M(Py) ₃	1.945					
	Qua	M(Py) ₄	2.068					
	Qua	M(Py) ₆	2.259	2.177	2.263	2.178		
	Qua	M(EPhen) ₁	1.936	1.970				
	D	M(EPhen) ₂	1.936	1.904	1.905	1.936		
	D	M(EPhen) ₃	1.953	2.151	1.950	1.943	1.952	2.150
	Qui	M(EPhen)(Py)	2.022	1.978	1.929			
	D	M(EPhen)(Py) ₂	1.939	1.940	1.915	1.916		
	D	M(EPhen) ₂ (Py) ₂	1.953	2.173	1.958	1.951	1.969	2.346
Ni	Т	M(Py) ₁	1.856					

Table S3. Bond distances (in Å) of the metal ions with the atoms of the ligands (the second column corresponds to the ground state: S = singlet, D = doublet, T = triplet, Qua = quartet, Qui = quintet).

	Т	M(Py) ₂	1.866					
	Т	M(Py) ₃	1.919					
	Т	M(Py) ₄	1.903	1.903	1.903	1.903		
	Т	M(Py) ₆	2.269	2.273	2.158	2.158		
	Т	M(EPhen) ₁	1.910	1.914				
	Т	M(EPhen) ₂	1.996	1.983	1.982	2.004		
	Т	M(EPhen) ₃	2.080	2.076	2.081	2.075	2.081	2.075
	Т	M(EPhen)(Py)	1.981	1.945	1.911			
	S	M(EPhen)(Py) ₂	1.914	1.911	1.890	1.889		
	Т	M(EPhen) ₂ (Py) ₂	2.096	2.094	2.096	2.094	2.101	2.106
Cu	D	M(Py) ₁	1.911					
	D	M(Py) ₂	1.886					
	D	M(Py) ₃	1.942	1.931	1.930			
	D	M(Py) ₄	2.026					
	D	M(Py) ₆	2.079	2.078	2.073	2.073		
	D	M(EPhen) ₁	1.991	1.991				
	D	M(EPhen) ₂	2.030	2.031	2.030	2.031		
	D	M(EPhen)₃	2.332	2.051	2.327	2.048	2.064	2.058
	D	M(EPhen)(Py)	2.042	2.016	1.921			
	D	M(EPhen)(Py) ₂	2.050	2.048	2.012	2.012		
	D	M(EPhen) ₂ (Py) ₂	2.071	2.361	2.077	2.063	2.038	2.391
Zn	S	M(Py) ₁	1.947					
	S	M(Py) ₂	1.885					
	S	M(Py) ₃	1.962					
	S	M(Py) ₄	2.022	2.020	2.021	2.021		

	S	M(Py) ₆	2.204	2.201	2.207	2.204		
	S	M(EPhen) ₁	2.004	2.005				
	S	M(EPhen) ₂	2.031	2.027	2.031	2.027		
	S	M(EPhen) ₃	2.175	2.165	2.171	2.161	2.176	2.165
	S	M(EPhen)(Py)	1.998	1.993	1.929			
	S	M(EPhen)(Py) ₂	2.053	2.049	2.001	2.001		
	S	M(EPhen) ₂ (Py) ₂	2.184	2.206	2.183	2.206	2.152	2.157
Pd	S	M(Py) ₁	1.980					
	S	M(Py) ₂	2.022					
	S	M(Py) ₃	1.997	2.027	2.028			
	S	M(Py) ₄	2.047					
	S	M(Py) ₆	2.058	2.044	2.056	2.045		
	S	M(EPhen) ₁	2.110	2.110				
	S	M(EPhen) ₂	2.057	2.057	2.057	2.057		
	S	M(EPhen) ₃	2.072	2.730	2.045	2.041	2.744	2.072
	S	M(EPhen)(Py)	1.998	1.993	1.929			
	S	M(EPhen)(Py) ₂	2.043	2.039	2.043	2.042		
	S	M(EPhen) ₂ (Py) ₂	2.055	2.808	2.058	2.767	2.043	2.061

Table S4. Mayer Bond Orders of the metal ions with the atoms of the ligands.

Fe	M(Py) ₁	0.759					
	M(Py) ₂	0.654	0.654				
	M(Py) ₃	0.586	0.586	0.586			
	M(Py) ₄	0.511	0.511	0.512	0.511		
	M(Py) ₆	0.363	0.371	0.372	0.342	0.336	0.363
	M(EPhen) ₁	0.575	0.567				
	M(EPhen) ₂	0.529	0.517	0.530	0.516		
	M(EPhen) ₃	0.675	0.679	0.673	0.679	0.676	0.682
	M(EPhen)(Py)	0.535	0.526	0.609			
	M(EPhen)(Py) ₂	0.493	0.491	0.540	0.539		
	M(EPhen) ₂ (Py) ₂	0.677	0.695	0.677	0.695	0.606	0.606
Со	M(Py) ₁	0.775					
	M(Py) ₂	0.675	0.675				
	M(Py) ₃	0.600	0.600	0.600			
	M(Py) ₄	0.467					
	M(Py) ₆	0.375	0.377	0.377	0.353	0.348	0.375
	M(EPhen) ₁	0.603	0.563				
	M(EPhen) ₂	0.640	0.646	0.648	0.642		
	M(EPhen) ₃	0.617	0.389	0.618	0.390	0.629	0.637
	M(EPhen)(Py)	0.503	0.548	0.617			
	M(EPhen)(Py) ₂	0.626	0.625	0.628	0.629		
	M(EPhen) ₂ (Py) ₂	0.618	0.378	0.624	0.636	0.591	0.288
Ni	M(Py) ₁	0.733					
	M(Py) ₂	0.681	0.681				

	M(Py) ₃	0.610	0.610	0.610			
	M(Py) ₄	0.619	0.619	0.619	0.619		
	M(Py) ₆	0.382	0.384	0.384	0.351	0.349	0.382
	M(EPhen) ₁	0.590	0.581				
	M(EPhen) ₂	0.515	0.498	0.517	0.520		
	M(EPhen) ₃	0.424	0.427	0.424	0.427	0.424	0.428
	M(EPhen)(Py)	0.503	0.545	0.604			
	M(EPhen)(Py) ₂	0.627	0.630	0.626	0.628		
	M(EPhen) ₂ (Py) ₂	0.418	0.417	0.418	0.417	0.411	0.412
Cu	M(Py) ₁	0.668					
	M(Py) ₂	0.645	0.645				
	M(Py) ₃	0.613	0.542	0.614			
	M(Py) ₄	0.494					
	M(Py) ₆	0.203	0.201	0.450	0.440	0.438	0.449
	M(EPhen) ₁	0.514	0.510				
	M(EPhen) ₂	0.478	0.474	0.479	0.474		
	M(EPhen)₃	0.267	0.456	0.444	0.448	0.273	0.457
	M(EPhen)(Py)	0.453	0.475	0.630			
	M(EPhen)(Py) ₂	0.467	0.465	0.495	0.494		
	M(EPhen) ₂ (Py) ₂	0.444	0.251	0.439	0.451	0.469	0.254
Zn	M(Py) ₁	0.833					
	M(Py) ₂	0.792	0.792				
	M(Py) ₃	0.640	0.640	0.640			
	M(Py) ₄	0.526	0.526	0.526	0.526		
	M(Py) ₆	0.351	0.353	0.353	0.320	0.313	0.351

	M(EPhen) ₁	0.599	0.591				
	M(EPhen) ₂	0.527	0.532	0.527	0.532		
	M(EPhen) ₃	0.362	0.368	0.361	0.368	0.364	0.370
	M(EPhen)(Py)	0.594	0.601	0.702			
	M(EPhen)(Py) ₂	0.496	0.500	0.559	0.558		
	M(EPhen) ₂ (Py) ₂	0.358	0.341	0.359	0.340	0.383	0.384
Pd	M(Py) ₁	0.781					
	M(Py) ₂	0.675	0.675				
	M(Py) ₃	0.618	0.725	0.621			
	M(Py) ₄	0.581					
	M(Py) ₆	0.561	0.564	0.066	0.554	0.590	0.054
	M(EPhen) ₁	0.461	0.457				
	M(EPhen) ₂	0.590	0.593	0.590	0.593		
	M(EPhen)₃	0.569	0.571	0.133	0.547	0.547	0.135
	M(EPhen)(Py)	0.640	0.580	0.610			
	M(EPhen)(Py) ₂	0.596	0.600	0.576	0.579		
	M(EPhen) ₂ (Py) ₂	0.553	0.100	0.552	0.111	0.573	0.539

Table S5. HOMO-LUMO gap (in a.u.).

	Fe	Со	Ni	Cu	Zn	Pd
M(Py) ₁	0.051	0.066	0.058	0.072	0.012	0.003
M(Py) ₂	0.086	0.086	0.081	0.080	0.125	0.002
M(Py) ₃	0.089	0.095	0.092	0.077	0.144	0.044
M(Py) ₄	0.069	0.066	0.088	0.092	0.152	0.113
M(Py) ₆	0.052	0.062	0.095	0.078	0.147	0.098
M(EPhen) ₁	0.032	0.035	0.036	0.037	0.005	0.034
M(EPhen) ₂	0.028	0.014	0.028	0.032	0.049	0.017
M(EPhen)₃	0.028	0.040	0.057	0.030	0.028	0.045
M(EPhen)(Py)	0.030	0.031	0.035	0.037	0.041	0.005
M(EPhen)(Py) ₂	0.033	0.025	0.036	0.033	0.050	0.025
M(EPhen) ₂ (Py) ₂	0.028	0.045	0.056	0.029	0.057	0.053

Table S6. NPA charges on the metal ion of the complexes.

	Fe	Со	Ni	Cu	Zn	Pd
M(Py) ₁	2.449	1.863	1.287	0.618	1.349	0.917
M(Py) ₂	2.461	1.855	1.252	0.523	1.365	0.764
M(Py) ₃	2.371	1.820	1.228	0.688	1.265	0.727
M(Py) ₄	2.321	1.865	0.667	0.690	1.163	0.587
M(Py) ₆	2.426	1.851	1.283	0.736	1.245	0.560
M(EPhen) ₁	2.300	1.684	1.074	0.515	1.208	0.692
M(EPhen) ₂	-0.313	0.164	-0.141	-0.324	0.152	-0.287
M(EPhen)₃	2.272	0.877	1.068	0.548	1.162	0.630
M(EPhen)(Py)	2.347	1.722	1.093	0.519	1.273	0.689
M(EPhen)(Py) ₂	2.322	0.920	0.676	0.635	1.163	0.598
M(EPhen) ₂ (Py) ₂	0.380	0.781	1.185	0.695	1.178	0.583

Table S7. XYZ coordinates and absolute energies (in a.u.) of all computed species by DFT (T = triplet, Q = quartet or quintet, and without a final letter means singlet or doublet for even and odd electron metals)

(attached as a separate file, labelled SIcoordinates.xyz)