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Three topics are addressed here: (i) some additional technical background concerning the 

well-known Polymer Reference Interaction Site Model (PRISM) theory of structure [1-5], (ii) some 

additional technical background for the Elastically Collective Nonlinear Langevin Equation 

(ECNLE) [1, 3, 6, 7] and Self-Consistent Cooperative Hopping (SCCH) [2, 8-10]  dynamical theories, 

and (iii)  additional calculations and results that support the discussions in the main text. 

 

I. PRISM Theory for Structural Correlations 

A. Polymer model and structural correlations 

Under the site equivalency simplification for homopolymers, PRISM theory [1-5] consists 

of a single scalar integral equation which in Fourier transform space is given by [1-5] 

 ℎmm(𝑞) = 𝜔m(𝑞)𝐶mm(𝑞)𝜔m(𝑞) + 𝜌𝜔m(𝑞)𝐶mm(𝑞)ℎmm(𝑞) = 𝜔m(𝑞)𝐶mm(𝑞)𝑆mm(𝑞) (1) 

Here ℎmm(𝑞) is the Fourier transform of the intermolecular site-site total correlation function 

ℎmm(𝑟) = 𝑔mm(𝑟) − 1 with  𝑔mm(𝑟) the radial distribution or pair correlation function, 𝐶mm(𝑟) 
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is the intermolecular site-site direct correlation function, and 𝑆mm(𝑞) is the collective or static 

structure factor. Using Eq.(1) in conjunction with the Percus-Yevick (PY) closure [4, 5, 8, 11, 12] and 

a polymer model (the semi-flexible chain (SFC) model is adopted [13, 14]) for the intramolecular 

structure factor 𝜔m(𝑞), the intermolecular site-site pair correlation functions can be computed 

numerically. 

Because we focus on the dynamics of a Kuhn segment instead of a single interaction site 

of the SFC model, the relationship between the structural correlation functions of a Kuhn segment 

(denoted by subscript “K”) and a site (also called matrix, denoted by a subscript “m”) is required.  

Since the Kuhn segment is treated as a dynamically rigid particle at a center-of-mass (CM) level, 

the relationship is [15-18] 

 𝑆KK(𝑞) = 𝑆mm(𝑞)/𝜔K(𝑞), 𝐶KK(𝑞) = 𝑁K𝜔K(𝑞)𝐶mm(𝑞) (2) 

Eq.(2) is not relevant to PRISM theory calculations at the interaction site level, but does enter the 

dynamical theories formulated at the Kuhn scale (see section II). The intramolecular structure 

factor at the Kuhn segment level, 𝜔K, is given in the literature [2]; as discussed previously, setting 

𝜔K = 1 or 𝜔K = 𝜔m in the dynamic theories has minor influence on the predicted results [2]. 

B. Molecular penetrant models and packing correlations. 

PRISM theory relates Smm(q) and hmp(q) as 

 ℎmp(𝑞) = 𝜔p(𝑞)𝐶mp(𝑞)𝑆mm(𝑞) (3) 

where Cmp(q) is the Fourier transform of the penetrant-polymer site-site direct correlation function 

and 𝜔p(𝑞)  is the penetrant intramolecular structure factor that is easily computed from the 

geometry of rigid molecules. Eq.(3) is closed using the PY approximation. 

II. Background for Dynamic Theories 

A. ECNLE theory for pure polymer melts and networks 
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The foundational starting point of NLE theory is the Kuhn segment CM scalar 

displacement dependent dynamic free energy, 𝐹dyn,K(𝑟𝐾) (inset of Fig.3b in the main text). At the 

high packing fractions of interest, the dynamic free energy has a localized form, characterized by 

a minimum and a local cage barrier, 𝐹B,K. Per the ECNLE theory generalization [3,4,7], in the deeply 

supercooled regime, to achieve a sufficiently large particle hop particles or sites outside the first-

shell cage must elastically displace in a collective and correlated manner by a small amount, 

corresponding to an elastic barrier 𝛽𝐹B,K ≈ 2𝜋𝑟cage,K
3 Δ𝑟eff,K

2 𝜌K𝐾0,K. The mean activated barrier 

hopping time is computed as the mean first passage time from Kramers theory [19, 20] 
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where 𝜏s,K = 𝜎K
2/𝐷s,K (with 𝜎K = 𝑁K

1/3
𝜎) is the characteristic fast process relaxation time for a 

Kuhn unit and the well-known formula for 𝐷s,K  is given elsewhere [3, 7]. 

B. Mapping idea 

The well-developed approach to map theoretical calculations for hard chains to the 

analogous chemically specific melts in temperature space at 1 atm is adopted here [21-23]. For the 

PnBA melt or network studied, the experimental Kuhn length [3, 24] is 𝑙K = 1.72nm, and in the 

tangent Koyama SFC model  
𝑙K

𝜎
=

2𝜉p

𝜎
− 1. This yields 𝜎 = 1.03nm based on using 𝜉p/𝜎 = 4/3 

per the discussion in Section II-A and elsewhere [2, 3]. In the mapping approach [21-23] the 

dimensionless compressibility, 𝑆0(𝜙eff), computed from PRISM theory for the Koyama SFC 

model [13, 14] is equated to 𝑆0(𝑇) obtained from experimental equation of state (EOS) data [24, 25] 

for PnBA melts. The latter was only measured in the high and medium supercooled regime [24, 25] 

(over the range Tg/T=0.46-0.74) and thus we employ an analytic representation derived from the 
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van der Waals model [26], 𝑆0
−1 = 𝑁s(𝐵′/𝑇 − 𝐴′)2 to model the experimental EOS data [24, 25].  We 

previously verified that reasonable variation of 𝑁s does not affect our analysis since the crucial 

aspect is the T-dependence of S0 that is determined by the EOS parameters 𝐴′ = 0.5271  and 𝐵′ =

1141.53K, and Ns enters only as a T-independent prefactor [21, 26, 27]. The final step of our model 

construction is to set Ns = 6.51 to reproduce the experimental glass transition temperature of 𝑇g = 

226K of pure PnBA melts [3, 28]. 

C. SCCH theory for shaped penetrants. 

The derivative of the penetrant dynamic free energy in polymer melts based on SCCH 

theory [2, 8-10] is formulated at a CM level where the total force on the molecule involves polymer-

induced forces on all sites of the penetrant. This is the only new aspect, and the effective force on 

the penetrant at the dynamic free energy level is straightforwardly given by: 

 
𝜕𝛽𝐹dyn,p(𝑟p,𝑟K)

𝜕𝑟p
= −

3

𝑟p
+

𝑁p𝑟p

3
∫

𝑑𝐪

(2𝜋)3 𝑞2𝜌𝜔p(𝑞)𝐶mp
2 (𝑞)𝑆mm(𝑞)𝑒−𝑞2𝑟p

2/6𝑒−𝑞2𝑟K
2𝜔K(𝑞)/6𝑆mm(𝑞) (5) 

Adopting the neutral pinning model of crosslinked polymer networks [3, 8], Eq.(5) is modified as: 

             
𝜕𝛽𝐹dyn,p(𝑟p, 𝑟Ku)

𝜕𝑟p
= −

3

𝑟p
+

𝑁p𝑟p

3
∫

𝑑𝐪

(2𝜋)3
𝑞2𝜔p𝐶mp

2 (𝑞)𝑒−𝑞2𝑟p
2/6 

                                                    × [𝑆uu(𝑞, 𝑟Ku) + 𝑆nn(𝑞, 𝑟Ku) + 𝑆un(𝑞, 𝑟Ku) + 𝑆nu(𝑞, 𝑟Ku)]  (6) 

Here, the subscript notation Ku and Kn refer to the mobile (unpinned) Kuhn segments and 

immobile (pinned) sites, respectively, and the 𝑆𝛼𝜃(𝑞, 𝑟Ku)  in Eq.(6) are the collective partial 

Debye-Waller factors of the polymer matrix, which differ from a melt of fully mobile segments, 

as previously derived [3, 29]. When 𝑁p = 1 and hence 𝜔p(𝑞) ≡ 1, Eqs.(5) and (6) simplify to the 

original form of the dynamic free energy for hard sphere penetrants [2, 8]. 
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To render SCCH theory predictive and tractable, the degree of Kuhn segment dynamic 

displacement that facilitates penetrant hopping is described by introducing a trajectory coupling 

variable, 𝛾, defined as [2, 8-10]: 𝑟Ku(𝛾) − 𝑟loc,Ku = (𝑟p − 𝑟loc,p)/𝛾. This parameter is determined 

based on enforcing a temporal self-consistency condition [2, 8-10]: 𝜏hop,p(𝛾) = 𝜏dis,K(Δ𝑟Ku,c(𝛾)), 

where Δ𝑟Ku(𝛾) = Δ𝑟p(𝛾)/𝛾  and 𝜏hop,p(𝛾)  and 𝜏dis,K(Δ𝑟Ku,c(𝛾))  are computed using Kramers 

theory as sketched in Eq.(4) but using the penetrant dynamic free energy and Kuhn segment 

dynamic free energy, respectively. Solving the self-consistency condition yields γ which depends 

on all system control parameters. In computing 𝜏hop,p  and hence 𝜏𝛼,p , the prefactor 𝜏s,p =

𝑑eff
2 /𝐷s,p is a characteristic short-time scale for penetrants which is assumed to be determined by 

penetrant effective total diameter 𝑑eff and 𝐷s,p, thereby yielding the 𝑁p-dependent 𝐷s,p,[9, 10] 
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where m and M are the penetrant and matrix (polymer monomer) site masses, respectively, 

𝑚/(𝑚 + 𝑀) = 𝑑s
3/(𝑑s

3 + 𝜎3), and 1/n(q)=1-j0(q)+2j2(q) with jα(q) the Bessel function of order α. 

A collective elastic fluctuation of the polymer matrix, and hence an elastic barrier, is 

required to allow the penetrant to hop.[3, 6, 7] This physics enters via a common elastic barrier 

(𝐹el,p = 𝐹el,Ku,c) in the computation of the timescale 𝜏hop,p(𝛾) = 𝜏dis,K(Δ𝑟Ku,c(𝛾)). The elastic 

barrier has been derived as 𝛽𝐹el,p ≈ 2𝜋(1 − 𝑓n)𝑟cage,p
3 Δ𝑟eff,p

2 𝜌K𝐾0,K where Δ𝑟eff,p(𝛾) ≈ 3Δ𝑟Ku,c
2 /

32𝑟cage,p, 𝑟cage,p = 𝑟min,mp(𝑑 + 𝑁K
1/3

𝜎)/(𝑑 + 𝜎), and 𝑟min,mp is the cage radius corresponding to 

the first minimum of cross radial distribution function 𝑔mp(𝑟).[2, 8] 
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When considering penetrant shape effects, the Kuhn segment localized state spring 

constant 𝐾0,K is identical to its pure polymer system value in the dilute penetrant limit of interest. 

Thus, the penetrant shape dependence of its elastic barrier arises entirely to the cooperative Kuhn 

segment facilitated displacement Δ𝑟Ku,c. As shown in plots below, Δ𝑟Ku,c increases significantly 

with the degree of penetrant shape asymmetry or 𝑁p, which provides the underlying reason for 

why in Figs.9d, 9e, and 9f a significant shape dependence of elastic barrier is predicted. 

III. Additional Results 

 

A. Penetrant alpha time scales 
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Fig.S1. Same displays as Fig.10 for the penetrant alpha relaxation time for penetrants of different 

shapes, 𝜏𝛼,p/𝜏0 , with 𝑑eff/𝜎 = 0.55  in both a polymer melt (solid) and heavily crosslinked 

network (dash), but now plotted versus  1000K/𝑇, for (a) 1D, (b) 2D, and (c) 3D like penetrants. 
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Fig.S2. Same displays as in Fig.11: penetrant mean alpha time as a function of 𝑇g(𝑓n)/𝑇 at various 

fixed temperatures and three penetrant shapes (sphere, hexagon, and 𝑁p = 6  rod) for 𝑑eff/𝜎 

equaling (a) 0.55  and (b) 0.8 , respectively, but now with the y-axis value at the two lower 

temperatures shifted down to achieve a master curve  by a factor of “X” as listed in the legends. 
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Fig.S3. Same displays as in Fig.12 for the penetrant alpha time as a function of the aspect ratio 

variable at (a) fixed 𝑇g/𝑇 and (b) fixed inverse temperature in a polymer melt (solid) and heavily-

crosslinked network (open) over a wide range of penetrant shapes and temperatures, but now for 

the smaller penetrant size 𝑑eff/𝜎 =0.55. From the left to right, the penetrant shapes are sphere, 

octahedron, triangular dipyramid, triangular prism, tetrahedron, triangle, square, triangle plate, 

pentagon, rod in 𝑁p = 2, hexagon, rod in 𝑁p = 3, rod in 𝑁p = 4, rod in 𝑁p = 5, and rod in 𝑁p =

6. 

B. Penetrant-to-polymer alpha time ratio 
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Fig.S4. Same displays as in Fig.13 for the degree of alpha time decoupling between penetrant and 

Kuhn segment dynamics as quantified by the ratio 𝜏𝛼,p/𝜏𝛼,K for 𝑑eff/𝜎 = 0.8 in both polymer melt 

(solid) and heavily crosslinked network (dash) for various values of 1D (a), 2D (b) and 3D (c) 

penetrant shapes, but now plotted as a function of 1000K/𝑇. 

C. Jump distance and decoupling parameters 𝒓K − 𝒓K,c  and 𝜸. 

The penetrant jump distance Δ𝑟p in units of 𝜎 is shown in Fig.S5a as a function of 𝑇g/𝑇 for 

𝑑eff/𝜎 = 0.8. As discussed in section II of the main text, 𝑁p𝑔mp(𝑑mp) increases as 𝑁p grows, and 

hence the penetrant jump distance decreases with 𝑁p. Relative to Δ𝑟p, the cooperative displacement 

of Kuhn segments (relative to its localization length) at penetrant alpha time scale Δ𝑟K,c increases 

with 𝑁p, as shown in Fig.S5b. The Kuhn segment displacement (relative to its localization length) 

at the Kuhn segment alpha time scale Δ𝑟K (pink data) is also shown in Fig.S5b. With increasing 

aspect ratio, it gradually approaches Δ𝑟K, suggesting the penetrant-matrix dynamic coupling grows 

as the penetrant aspect ratio increases, an intuitive trend. For the 𝑁p = 6 rod, Δ𝑟K,c is slightly larger 

than Δ𝑟K, implying a slaved behavior of penetrant and matrix. 

Relative to polymer melts, the penetrant in crosslinked networks needs to displace a larger 

distance before escaping its cage, and hence the penetrant jump distance Δ𝑟p  in crosslinked 

networks is higher than in polymer melts (see Fig.S5a). Given this, and that the trajectory coupling 

parameter 𝛾 does not change much with degree of crosslinking at fixed temperature or 𝑇g/𝑇 (see 
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Fig.15b and Figs.S7-S9), one might expect the Kuhn segment facilitation displacement Δ𝑟K,c =

Δ𝑟p/𝛾  in networks would be higher than in polymer melts. This expectation is confirmed in 

Fig.S5b. Given the larger value of Δ𝑟K,c for crosslinked networks, one might then expect that the 

penetrant elastic barrier in networks will be larger for the same range of 𝑇g/𝑇 since as discussed 

above the elastic barrier is determined  by Δ𝑟K,c. However, this argument is not correct because in 

order to fairly compare crosslinked networks with polymer melts, the influence from the polymer 

Kuhn segment localization spring constant (effective quantifies polymer matrix high frequency 

elastic modulus) 𝐾0,K must be taken into account, and doing so results in an increase of the degree 

of decoupling at fixed 𝑇g/𝑇. We do find (see Fig.15a) that Δ𝑟K − Δ𝑟K,c for crosslinked networks is 

higher than in polymer melts. Hence, the degree of dynamic coupling in networks is smaller than 

in melts, thereby resulting in a lower elastic barrier for the networks over the same range of 𝑇g/𝑇.  

All the above trends and predictions remain the same in 𝑇g/𝑇 and 1000K/𝑇 spaces (the 

latter results are in Fig.S6) except that in 1000K/𝑇 space, 𝐾0,K for networks is much higher than 

in polymer melts at a fixed temperature. Thus, the elastic barrier in melts is much less than that in 

networks at any fixed temperature. In reduced inverse temperature space, 𝐾0,K at a fixed 𝑇g/𝑇 in 

melts corresponds to a much lower temperature, and hence 𝐾0,K  is larger than in networks. 

Additionally, consistent with our findings for the decoupling time ratio 𝜏𝛼,p/𝜏𝛼,K, we find 

from our calculations of Δ𝑟K − Δ𝑟K,c that the degree of penetrant-polymer coupling in networks is 

smaller than that in melts for the same range of 𝑇g/𝑇. In 1000K/𝑇 space, Δ𝑟K − Δ𝑟K,c cannot fully 

capture the crosslink effects on penetrant dynamics because the localization spring constants of 

melts and networks are significantly different. Instead, the time ratio 𝜏𝛼,p/𝜏𝛼,K encodes all effects 
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from crosslinking on penetrant relaxation, and we find the relatively smaller degree of coupling in 

networks is also true in 1000K/𝑇 space over the same range of temperatures (see Fig.S4). 
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Fig.S5. (a) Penetrant dynamic jump distance Δ𝑟p and (b) the facilitation displacement of Kuhn 

segments (relative to its localization length) at the penetrant alpha time scale Δ𝑟K,c, as a function 

of 𝑇g/𝑇 for 𝑑eff/𝜎 = 0.8 in polymer melt (solid) and a heavily crosslinked network (dash) over a 

wide range of 1D-like penetrant shapes. In (b), the Kuhn segment jump distance Δ𝑟K (pink curves) 

is also shown. 
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Fig.S6. Same displays as in Fig.S5 for (a) penetrant dynamic jump distance Δ𝑟p, and (b) facilitation 

displacement of Kuhn segments (relative to its localization length) at penetrant alpha time scale 

Δ𝑟K,c for 𝑑eff/𝜎 = 0.8 in a melt (solid) and network (dash) over a wide range of 1D penetrant 

shapes, but here now plotted as a function of 1000K/𝑇. In (b), the Kuhn segment jump distance 

Δ𝑟K (pink curves) is also shown. (c) Same display as in (a) or (b), but replacing the y-axis with the 
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displacement difference of Kuhn segment at its alpha time scale relative to that at the penetrant 

alpha time scale, 𝑟K − 𝑟K,c. 

The variable 𝛾 is directly related to the core self-consistent calculation of SCCH theory 

that quantifies the cooperative nature of penetrant hopping. By construction, the smaller 𝛾 is, the 

larger is the dynamic coupling of activated penetrant and polymer matrix displacements. As 

discussed in section II-C, 𝛾 is determined based on enforcing a temporal self-consistency condition 

[2, 8-10] which involves the local cage barrier. Hence, its variation with temperature, crosslink 

density, shape of penetrant, and temperature are different from that of 𝑟K − 𝑟K,c  or the alpha 

relaxation time ratio analyzed in the main text and here. 

We presented in the main text only the results for rod-like penetrants at  𝑑eff/𝜎 = 0.8. 

Analogous results for the 1D penetrants for  𝑑eff/𝜎 = 0.55 are shown in Fig.S7, and the 2D and 

3D like penetrant cases at both 𝑑eff/𝜎 = 0.8 and 0.55 are presented in Fig.S8. All behave in a 

similar manner as that of the 1D-like case results at 𝑑eff/𝜎 = 0.8. The reason that the behavior of 

𝛾 for 𝑑eff/𝜎 = 0.8 remains essentially unchanged for the 𝑑eff/𝜎 = 0.55 systems (see Fig.14b) is 

because the penetrant elastic barrier plays no role in determining 𝛾. Hence, the predicted behavior 

for both penetrant sizes should be similar, as confirmed by comparing results in Fig.15b and 

Fig.S7. 



 12 

0.6 0.8 1.0

2.5

3.0

3.5

g

Tg/T

         Np

  1

  2

  4

  6
solid: melt

dash: network

1D linear rod

dp,eff / = 0.55

 
Fig.S7. Dynamic coupling parameter, 𝛾, as a function of 𝑇g/𝑇 in a melt (solid) and network (dash) 

over a wide range of 1D-like penetrant shapes for penetrant size of 𝑑eff/𝜎 = 0.55. 

By comparing the results in polymer melts and crosslinked networks, we find the penetrant 

shape effects have the same influence on the temperature dependence of their coupling parameter 

i.e., 𝛾 increases with 𝑇g/𝑇 at low aspect ratios, but decreases or remains constant at high aspect 

ratios. However, penetrant shape has a weaker effect on 𝛾 in networks (see Fig.15b). Moreover, at 

low aspect ratios, 𝛾 for melts is higher than in networks, while an opposite trend is observed when 

the penetrant aspect ratio becomes large enough (crossover aspect ratio of ~2) where an identical 

𝛾 emerges in polymer melts and crosslinked networks over all ranges of 𝑇g/𝑇 studied. 
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Fig.S8. Same displays as in Fig.14 for the dynamic coupling parameter, 𝛾, in a melt (solid) and 

network (dash) as a function of 𝑇g/𝑇  for penetrant size 𝑑eff/𝜎 = 0.8  (a, b) and 0.55  (c, d), 

respectively, but now plotted over a wide range of 2D-like (a, c) and 3D-like (b, d) penetrant 

shapes. 

Different from the nonmonotonic dependence of the trajectory coupling parameter 

predicted in 𝑇g/𝑇 space in crosslinked networks and polymer melts, 𝛾 in networks in 1000K/𝑇 

space is always larger than in melts over the same temperature range regardless of the penetrant 

shape (see Fig.S9). Thus, we deduce that crosslinking contributes more to Kuhn segment dynamics 

than it affects the penetrant motion, which increases the degree of decoupling (corresponding to a 

larger 𝛾) between dynamics of Kuhn segment and penetrant. 
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Fig.S9. Same displays as in Fig.15b and Fig.S7 for the dynamic coupling parameter, 𝛾, in a melt 

(solid) and network (dash) over a wide range of 1D-like penetrant shapes for penetrant size at 

𝑑eff/𝜎 = 0.8 (a) and 0.55 (b), respectively, but now plotted versus 1000K/𝑇. 
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