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1 Number of arrangements of the active monomers:
theoretical calculation

We report here on the theoretical estimate of the number of pos-
sible arrangements of the active monomers as a function of the
their fraction p. We recall that we considered four different set-
tings in the main text: a) the active monomers are distributed
at random along the chain, b) the active monomers are arranged
in one active block, c) the active monomers are arranged in two,
non-overlapping active blocks, d) the active monomers are ar-
ranged in three, non-overlapping active blocks. We will provide
here estimates for settings a)-c).
The number of possible arrangements of N · p active monomers
within a total of N monomers can be calculated using combinato-
rial methods. In the random case, the number of configurations
N is simply given by the binomial coefficient:

N =
N!

(N · (1− p))! · (N · p)!
(S1)

where both N · p and N · (1 − p) are integers or should be
rounded to the closest integer. The set of arrangements where
the active monomers are organized in a single block of N · p
monomers is a subset of the random case; the number of con-
figurations is simply given by:

N1(N, p) = N · (1− p−1/N) ∼
N≫1

N · (1− p) (S2)

where N ·(1− p) is the number of inactive monomers; the addi-
tional 1/N accounts for fact that the first monomer is always pas-
sive. The approximation is valid in the limit of very large chains.
Finally, in the case of two identical blocks, totalling N · p active
monomers, the number of arrangements can be approximated as

N2 =
N1 (N · p/2, p/2) ·N1 (N · (1− p)/2, p/2)

2
(S3)

where the factor 1/2 accounts for the fact that the order of
the blocks does not matter. Note, however, that the formula is
based on the approximation that the blocks are independent, i.e.
all positions are possible and may overlap. This approximation
remains reasonable as long as the percentage of active monomers
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remains low and, in any case, overestimates the total number of
arrangements. The theoretical predictions are shown in Fig. S1.

Fig. S1 Number of arrangements N of N · p active monomers (with
N =500) along the polymer chain as a function of the percentage of
active monomers p.

As shown, the number of arrangements is overwhelmingly
larger in the random case than in the one block or two blocks
cases. Thus, albeit blocks are possible random arrangements, they
are so rare that their effect is negligible at the population level.

2 Gyration radius, asphericity and prolateness
In this section, we report complementary data on the size and
shape of polymer chains: we report data for polymers of different
contour length and Péclet number with respect to the main text.

In Fig. S2, we report the mean gyration radius and prolateness
as a function of the parameter x for chains of different degree of
polymerization N =100, 300, 600. We can observe that the fea-
tures, reported in the main text for N =500, are visible here as
well. Here, no smoothing has been applied to the data; error bars
refer to the standard error of the mean over M =25 independent
identical realizations. This confirms that the general features re-
ported in the main text remain valid for polymers of different
length, bearing in mind that, for the values of p and x highlighted
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Fig. S2 Mean Gyration Radius (left), and prolateness (right) as a function
of the parameter x for Pe =10, different values of p and N = 100, N = 300
N = 600.

in the main text, the scaling breaks due to self-entanglements.
In Fig. S3 we show the mean gyration radius, asphericity and

prolateness as a function of the parameter x for chains of length
N =500 at fixed Pe =0.1 and different values of p. We thus check
whether the contour position of the active section influences the
conformation and the shape of the chain even at low activity. In-
deed, we find that the values of the shape parameters are in semi-
qualitative agreement with the values reported in the main text
at Pe =10. This means that, even if the individual monomers
have a low activity, the effects of the activity on the conforma-
tion of the chain can be relevant. Indeed, the expected value of
Rg, at Pe =0, is Rg/σ ≈ 0.59 ·N0.588 = 20.21 (for the Kremer-Grest
model, we take the scaling prediction from the Supplemental Ma-
terial of ref.1); thus Rg increases almost by a factor of two at
x = 1/N and shrinks by roughly 30% at x = (1− p)/2. On the
contrary, for a fully active polymer, the relative difference is, at
Pe =0.1, of the order of a few percent. However, as suggested by
the small values of the non-Gaussian parameter reported in the
main text, the effect of the contour position of the active block on
the polymer dynamics at small values of Pe is not equally relevant.

3 End-to-end autocorrelation function
In this section, we report complementary data on the time cor-
relation function of the end-to-end vector of the active section at
fixed Pe =10.

In Fig. S4 we report the time correlation function of the end-
to-end vector of the active section as a function of the rescaled
time tD0/σ2 at fixed N =100 and Pe =10 for different values of
x. We show in panel (a) data referring to p = 0.1 and in panel
(b) data referring to p = 0.3. We highlight that the anomalous

Fig. S3 (a) Gyration Radius, (b) asphericity and (c) prolateness as a
function of x, at fixed Pe =0.1 for different values of p.

behaviour of the time correlation function is much more evident
in panel (a) than in panel (b) or in the data shown in the main
text. For N =100, p =0.1 the active section takes much longer
time to decorrelate, to the point that its value only approaches
zero at the end of the available simulation window. The tail of
the correlation function looks, in the semi-log representation of
the plot, almost linear; this would suggest a very slow logarithmic
decay. As mentioned in the main text, this is a consequence of the
effective persistence length, connected to the tangential activity.

In Fig. S5 we report the time correlation function of the end-
to-end vector of the active section as a function of the rescaled
time tD0/σ2 at fixed N =300 and Pe =10 for different values of
x. We show in panel (a) data referring to p = 0.1 and in panel
(b) data referring to p = 0.3. Comparing to the previous figure,
we notice that that the anomalous behaviour of the time correla-
tion function at x = 1/N is less extreme for N =300, again simply
because the length of the active block increases upon increasing
N at the same value of p. As in the main text, we notice in both
Figs. S4, S5 the characteristic time, associated with “tumbling”
motion, increases upon increasing both N and p.

4 Bond length distribution
In this section, we report complementary data on the distribution
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Fig. S4 Time correlation function of the end-to-end vector of the active
section at fixed Pe =10, N = 100 for different values of x and (a) p = 0.1
(b), p =0.3.

Fig. S5 Time correlation function of the end-to-end vector of the active
section at fixed Pe =10, N = 100 for different values of x and (a) p = 0.1
(b), p =0.3.

of the distance between two consecutive monomers within the ac-
tive section for N = 500, p = 0.5 and different values of Pe = 0.1,
1, 10; there is only one active block. We report the distribu-

Fig. S6 Probability distribution function of the distance between two
consecutive monomers within the active section at fixed for N = 500,
p = 0.5 and Pe = 0.1 (red), Pe = 1 (blue), Pe = 10 (purple).

tions, sampled within the steady state, in Fig. S6. The shape of
the distribution is similar for all values of the Péclet number con-
sidered in this work, suggesting that self-propulsion does not in-
fluence the bond length distribution in our model of tangentially
propelled polymers, at least within the range of values consid-
ered.

5 Comparison between “model 1” and “model 2”
In this section, we present additional information concerning the
comparison between the two models, “model 1” and “model 2”,
presented in the main text. We show that the difference between
these two models manifests when the head monomer becomes
active and, at the same time, when only a few monomers are
active. Specifically, we discuss the properties of the end-to-end
vector of the active section R⃗a

e , i.e. the time correlation function
and the distribution of its magnitude Ra

e for “model 1” and “model
2” at fixed Pe =10, N = 100. We further fix x = 1/N, such that the
head monomer is active in “model 2”, and we consider only small
values of p.

In Fig. S7 we report the time correlation function of the end-to-
end vector of the active section as a function of the rescaled time
tD0/σ2 at fixed N =100 and Pe =10 for x = 1/N and different val-
ues of p. We show in panel (a) data referring to “model 1” and
in panel (b) data referring to “model 2”. We highlight that the
decorrelation time of the end-to-end vector of the active section
is similar for all values of p in “model 1”, while it strongly varies
with p in “model 2”. We observe, moreover, a non-monotonic be-
haviour of the decorrelation time with p in “model 2” with a max-
imum at p = 0.04. The minimum decorrelation time is obtained
for p = 0.2 and corresponds to the one obtained for “model 1”.
This suggests that the difference between the two models is only
relevant for small values of p or, as discussed in the main text,
when the number of active monomers is smaller or equal to the
activity-induced persistence length.

In Fig. S8 we report the distribution of the end-to-end distance
of the active section at fixed Pe =10, N = 100 for different val-
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Fig. S7 Time correlation function of the end-to-end vector of the active
section at fixed Pe =10, N = 100 for different values of x and p for model
1, when last monomer of the chain is not active (a) and for “model 2”,
when last monomer of the chain is active (b).

ues of x and p for “model 1” (panel (a)) and “model 2” (panel
(b)). We observe that, for p ≤ 0.1, the distributions of the end-to-
end distance are quite spread for “model 1”, while they are much
more peaked for “model 2”; in particular, the maximum value
corresponds to the largest possible value Ra

e ∼ N · p. This shows
that the presence of an active monomer at the end of the chain
tends to straighten the active block and that such a straight sec-
tion is stable. This difference practically disappears for p > 0.1.
This observation further strengthens the conclusion drawn pre-
viously: the difference between the two models is only relevant
for small values of p. Further, we remark that the large correla-
tion times observed in Fig. S7 for “model 2” are connected to the
straightening of the active block.

6 Stochastic model for the estimation of the diffu-
sion coefficient

In this section, we propose to use the stochastic model derived
in2,3 to estimate the diffusion coefficient of the active section of
the chain. Briefly, the model considers the centre of mass of the
chain as subject to two stochastic forces, one due to the thermal
bath η⃗ and one due to the self-propulsive forces ξ⃗ ≡ F⃗a = ∑i f a

i .
Both terms have zero average; the thermal noise η⃗ obeys the
fluctuation-dissipation relation

⟨⃗η(t )⃗η(t ′)⟩= 2d
(kBT )2

D0
Nδ (t − t ′) (S4)

Fig. S8 Distribution of the end-to-end distance of the active section at
fixed Pe =10, N = 100 for different values of x and p for (a) “model 1”,
in which the head of the polymer is not active and (b) for “model 2”, in
which the head of the polymer is self-propelled, with a force fa/3.

while ξ⃗ is, as a first approximation, exponentially correlated

⟨⃗ξ (t )⃗ξ (t ′)⟩= 2d
ξ 2

0
Ct

exp
(
−|t − t ′|

Ct

)
. (S5)

In Eqs. (S4), (S5), d refers to the dimensionality of the system,
kBT = 1/β is the thermal energy, D0 is the diffusion coefficient of a
single monomer, N is the degree of polymerization, ξ0 is related to
the typical amplitude of the active noise and Ct is the correlation
time. The mean square displacement can be written at long times,
assuming that ξ and η are not correlated, as

⟨r2
cm(t)⟩=

(βD0)
2

N2 4dξ
2
0 t +2d

(βD0)
2

N2
(kBT )2

D0
Nt

= 2Pe2 ⟨R2
e⟩

σ2
CtD0

σ2
D0

N2 t +2d
D0

N
t (S6)

where σ is the monomer diameter; we used the approximation
F⃗a = faR⃗e/σ2, R⃗e being the end-to-end vector, and the definition
of Pe. Thus, the diffusion coefficient of the centre of mass is:

D =
D0

N
+

Pe2

d
⟨R2

e⟩
N2σ2

CtD0

σ2 D0 =
D0

N
+

f 2
a ⟨R2

e⟩Ct

3N2γ2σ2 (S7)

where γ is the friction coefficient. The second expression is the
same reported in3. For a partially active polymer, we replace ⟨R2

e⟩
with ⟨(Ra

e)
2⟩, i.e. the average end-to-end distance of the active

block, Ct with Ca
t , i.e. the decorrelation time of the end-to-end
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vector of the active block and, in the active term, N with Na. This
latter substitution comes from the fact that the active noise ξ⃗ is
generated by Na monomers. The formula thus becomes

D =
D0

N
+

Pe2

d
⟨(Ra

e)
2⟩

N2
a σ2

Ca
t D0

σ2 D0 =
D0

N
+

f 2
a ⟨(Ra

e)
2⟩Ca

t
3N2

a γ2σ2 (S8)

We first report ⟨Ra
e⟩=

√
⟨(Ra

e)
2⟩ and Ca

t as measured from simula-
tions. Data refer to simulations of “model 1”.

Fig. S9 Decorrelation time of the end-to-end vector of the active section
as a function of x for Pe=10, N = 100 (a) and N = 300 (b) for different
values of p.

Figure S9 shows the decorrelation time of the end-to-end vec-
tor of the active section as a function of x for Pe=10, N = 100
(a) and N = 300 (b) for different values of p. The decorrelation
times are estimated as the times for which the autocorrelation
function of the end-to-end vector of the active section is equal to
1/e. We observe that the correlation times decrease with x and,
as expected, increase with p and N, simply because the size Na of
the active section increases upon increasing N or p. Next, in
Fig. S10 we report the end-to-end distance of the active section as
a function of x for Pe=10, N = 100 (a), N = 300 (b) and N = 600
(c) for different values of p. We observe for ⟨Ra

e⟩ a trend similar
to the one observed for Ca

t : the end-to-end distance of the active
section decreases with x and increases with p and N. However,
for x ≳ 0.1, ⟨Ra

e⟩ remains markedly constant. These data suggest
that, unless the active block is right at the head of the chain, the
globule-like character of the active block is not affected by the
position of said block along the chain.

The two quantities just reported, ⟨Ra
e⟩ and Ca

t , allow to estimate
the long time diffusion coefficient using Eq. S8. The diffusion
coefficient thus obtained is reported in Fig. S11 as a function of x

Fig. S10 End-to-end distance of the active section as a function of x for
Pe=10, N = 100 (a), N = 300 (b) and N = 600 (c) for different values of
p.

Fig. S11 Estimation of the diffusion coefficient using the stochastic
model as a function of x for Pe=10, N = 100 (a) and N = 300 (b) for
different values of p.

for Pe=10, N =100 (a) and N =300 (b) for different values of p. A
comparison with Fig. 8 of the main text shows that the stochastic
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model gives reasonable estimates of D/D0 only for x ≈ 1/N. On
the contrary, for all other values of x, the model overestimates the
diffusion coefficient: while the overall decreasing trend of D/D0

as a function of x is captured, the estimates differ by one order of
magnitude or more from the simulation results.

Fig. S12 Estimation of the long time diffusion coefficient D/D0 using
the stochastic model, as a function of p for x = 1/N in “model 1” (red)
or “model 2” (blue).

Finally, we consider the predictions from the stochastic model
for partially active polymers at very small values of p, x = 1/N. In
particular, we apply the stochastic model to both “model 1” and
“model 2” self-propelled polymers. As reported in the main text,
simulation data show that the diffusivity is enhanced by the pres-
ence of an active monomer at the head of the chain in “model 2”
for p ≤ 0.1 compared to “model 1”. Further, D/D0 shows a non
monotonic behaviour for “model 2”.
The predictions of the stochastic model are reported in Fig. S12.
We observe that the stochastic model qualitatively reproduces the
non-monotonic behaviour in the case of “model 2”. However, no-
tably, a slight non-monotonicity is also predicted in the case of
“model 1”; as reported in the main text, such behaviour is not
observed in the data. Moreover, in both cases, the predicted dif-
fusion coefficient is much larger than the measured value. All
in all, these shortcomings show that this very simple stochastic
model is not able to recapitulate quantitatively the dynamics of
the partially active polymers considered in this work.

7 Multiple active blocks: configurational properties
In this section, we briefly report on the configurational proper-
ties of polymers with more than one active block. We choose to
report these data as a function of the minimum contour distance
between the beginning of the closest active section and the head
of the polymer, for the sake of coherence with the rest of the
manuscript.

In Fig. S13 we show the mean gyration radius, asphericity and
prolateness as a function of the parameter x for polymers of length
N =500 with two non-overlapping active blocks at Pe =0.1 (top
row), Pe =10. (bottom row) and different values of p. We ob-
serve that the shape parameters retain the non-monotonic charac-
ter also in presence of a second active block; however asphericity
and prolateness appear to be more similar, upon varying the frac-
tion of the active monomers p, with respect to the single block

case. On the contrary, the gyration radius as a function of x
changes qualitatively in presence of a second active block, los-
ing its non-monotonic character. However, the special nature of
arrangements with small x is maintained.

Finally, in Fig. S14 we show the mean gyration radius, aspheric-
ity and prolateness as a function of the parameter x for polymers
of length N =500 with three non-overlapping active blocks at
Pe =0.1 (top row), Pe =10. (bottom row) and different values
of p. We can make essentially the same observation as in the two
blocks case. All in all, upon increasing the number of blocks, the
parameter x appears to become less effective, as highlighted by
the more pronounced overlap between the curves, visible in both
Figs. S13, S14. Moreover, there is a further symmetry breaking
in this representation as, for small values of x, multiple different
arrangements share the same value of x, while the same happens
at x → 1− p only to very few, very similar arrangements.
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Fig. S13 Mean Gyration Radius (left), asphericity (middle), and prolatness (right) as a function of the parameter x, for polymer chains of N =500
monomers with two non-overlapping active blocks, Pe = 0.1 (top row) and Pe = 10 (bottom row) and different values of p.

Fig. S14 Mean Gyration Radius (left), asphericity (middle), and prolatness (right) as a function of the parameter x, for polymer chains of N =500
monomers with three non-overlapping active blocks, Pe = 0.1 (top row) and Pe = 10 (bottom row) and different values of p.
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