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Analytic solution for detachment force

FIG. S1: Droplet detachment in a) Young-Dupre Model and b) our model.

Here, we will derive an expression for the non-dimensional detachment force F̃d =

Fd/γV
1/3 as a power series of 󰂃 = (1 + cos θr). Our analytic solution applies for droplets

with high contact angles, i.e., where 󰂃 ≪ 1.

At the onset of detachment, the droplet geometry can be modelled as a spherical cap of

radius R, with the volume V and centroid position z given by
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π

3
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and
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2

4(2 + cos θr)
−R cos θr

=
3R󰂃2

4(1 + 󰂃)
−R(󰂃− 1)

= R

󰀕
1− 󰂃+

3󰂃2

4(1 + 󰂃)

󰀖
(S2)

S-2



After detaching, the droplet is now a sphere with radius R′ (which also equivalent to the

new centroid position z′) and by conservation of volume
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The droplet’s centroid position has been raised by an amount δz

δz = z′ − z
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. There is also an increase in the surface area of the droplet by an amount δA, where

δA = 4πR′2 − 2πR2(1− cos θ)

= 4πR2 (1 + 󰂃)2/3(2− 󰂃)4/3
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󰀖
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Total change in interfacial energy is given by ∆Eγ = πr2(γs − γls) + δA γ, where γ is the

droplet’s surface tension, γs is the solid’s surface energy, and γls is the liquid-solid surface

energy. In the Young-Dupre model, δA = πr2. Here, we use the expression in Equation S5

for δA and the relations r = R sin θr and γs − γls = γ cos θr to get

∆Eγ = πR2γ sin2 θ cos θ + 2πR2γ
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The total change in interfaical energy ∆Eγ must be equivalent to the work done by the

detachment force Fd over the distance δz, i.e.,

Fd δz = ∆Eγ

FdR = πR2γ
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We can recast Equation S1 to get R = (3V/π)1/3(1 + 󰂃)−1/3(2− 󰂃)−2/3 and substituting this

to Equation S7 to get

Fd = π
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Comparison between simulation and analytic results

Table S1: Comparison between simulation and analytic results. Body and surface F̃d values
are obtained numerically by solving Young-Laplace equation, while analytic F̃d is calculated
using Equation 5 in the main text. For θ > 140◦, F̃d values for all three simulation and
analytic models are very close to one another (coloured cells).

θ 1 + cos θ Body F̃d Surface F̃d Analytic F̃d.
40◦ 1.77 5.31 1.56 3.44
50◦ 1.64 4.66 1.46 3.20
60◦ 1.50 4.01 1.37 2.92
70◦ 1.34 3.39 1.37 2.62
80◦ 1.17 2.80 1.35 2.28
90◦ 1 2.26 1.19 1.95
100◦ 0.83 2.80 1.35 2.28
110◦ 0.66 1.38 0.93 1.28
120◦ 0.5 1.02 0.76 0.97
130◦ 0.36 0.72 0.63 0.70
140◦ 0.23 0.46 0.39 0.46
150◦ 0.13 0.26 0.22 0.26
155◦ 0.093 0.18 0.18 0.18
160◦ 0.060 0.116 0.116 0.118
165◦ 0.034 0.066 0.067 0.066
170◦ 0.015 0.0295 0.0302 0.0296
175◦ 0.0038 0.0079 0.0077 0.0074
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