Supporting information for "Droplet detachment force and its relation to Young-Dupre adhesion"

Dan Daniel*,† and Xue Qi Koh‡

 †Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
 ‡Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634

E-mail: danield@kaust.edu.sa

Analytic solution for detachment force

FIG. S1: Droplet detachment in a) Young-Dupre Model and b) our model.

Here, we will derive an expression for the non-dimensional detachment force $\tilde{F}_{\rm d} = F_{\rm d}/\gamma V^{1/3}$ as a power series of $\epsilon = (1 + \cos \theta_r)$. Our analytic solution applies for droplets with high contact angles, i.e., where $\epsilon \ll 1$.

At the onset of detachment, the droplet geometry can be modelled as a spherical cap of radius R, with the volume V and centroid position z given by

$$V = \frac{\pi}{3} R^3 (2 + \cos \theta_r) (1 - \cos \theta_r)^2$$

=
$$\frac{\pi}{3} R^3 (1 + \epsilon) (2 - \epsilon)^2$$
 (S1)

and

$$z = \frac{3R(1+\cos\theta_r)^2}{4(2+\cos\theta_r)} - R\cos\theta_r$$

= $\frac{3R\epsilon^2}{4(1+\epsilon)} - R(\epsilon-1)$
= $R\left(1-\epsilon+\frac{3\epsilon^2}{4(1+\epsilon)}\right)$ (S2)

After detaching, the droplet is now a sphere with radius R' (which also equivalent to the new centroid position z') and by conservation of volume

$$\frac{4}{3}\pi R^{\prime 3} = \frac{\pi}{3}R^{3}(1+\epsilon)(2-\epsilon)^{2}$$

$$R^{\prime} = R\frac{(1+\epsilon)^{1/3}(2-\epsilon)^{2/3}}{4^{1/3}}$$
(S3)

The droplet's centroid position has been raised by an amount δz

$$\delta z = z' - z$$

= $R \frac{(1+\epsilon)^{1/3}(2-\epsilon)^{2/3}}{4^{1/3}} - R \left(1-\epsilon + \frac{3\epsilon^2}{4(1+\epsilon)}\right)$ (S4)
= $R \left(\epsilon - \epsilon^2 - \frac{2\epsilon^3}{3} + O(\epsilon^4)\right)$

. There is also an increase in the surface area of the droplet by an amount δA , where

$$\delta A = 4\pi R'^2 - 2\pi R^2 (1 - \cos \theta)$$

= $4\pi R^2 \frac{(1+\epsilon)^{2/3} (2-\epsilon)^{4/3}}{4^{2/3}} - 2\pi R^2 (2-\epsilon)$ (S5)
= $2\pi R^2 \left(\epsilon - \epsilon^2 + \frac{\epsilon^3}{3} + O(\epsilon^4)\right)$

Total change in interfacial energy is given by $\Delta E_{\gamma} = \pi r^2 (\gamma_s - \gamma_{ls}) + \delta A \gamma$, where γ is the droplet's surface tension, γ_s is the solid's surface energy, and γ_{ls} is the liquid-solid surface energy. In the Young-Dupre model, $\delta A = \pi r^2$. Here, we use the expression in Equation S5 for δA and the relations $r = R \sin \theta_r$ and $\gamma_s - \gamma_{ls} = \gamma \cos \theta_r$ to get

$$\Delta E_{\gamma} = \pi R^2 \gamma \sin^2 \theta \cos \theta + 2\pi R^2 \gamma \left(\epsilon - \epsilon^2 + \frac{\epsilon^3}{3} + O(\epsilon^4) \right)$$

$$= \pi R^2 \gamma (1 - \cos \theta) (1 + \cos \theta) \cos \theta + 2\pi R^2 \gamma \left(\epsilon - \epsilon^2 + \frac{\epsilon^3}{3} + O(\epsilon^4) \right)$$

$$= \pi R^2 \gamma (-2\epsilon + 3\epsilon^2 - \epsilon^3) + 2\pi R^2 \gamma \left(\epsilon - \epsilon^2 + \frac{\epsilon^3}{3} + O(\epsilon^4) \right)$$

$$= \pi R^2 \gamma \left(\epsilon^2 - \frac{\epsilon^3}{3} + O(\epsilon^4) \right)$$
 (S6)

The total change in interfaical energy ΔE_{γ} must be equivalent to the work done by the detachment force F_d over the distance δz , i.e.,

$$F_{d} \,\delta z = \Delta E_{\gamma}$$

$$F_{d} R = \pi R^{2} \gamma \left(\epsilon^{2} - \frac{\epsilon^{3}}{3} + O(\epsilon^{4})\right) \left(\epsilon - \epsilon^{2} - \frac{2\epsilon^{3}}{3} + O(\epsilon^{4})\right)^{-1}$$

$$F_{d} = \pi R \gamma \left(\epsilon + \frac{2\epsilon^{2}}{3} + O(\epsilon^{3})\right)$$
(S7)

We can recast Equation S1 to get $R = (3V/\pi)^{1/3}(1+\epsilon)^{-1/3}(2-\epsilon)^{-2/3}$ and substituting this to Equation S7 to get

$$F_{d} = \pi \left(\frac{3V}{\pi}\right)^{1/3} \gamma \left(\frac{\epsilon}{2^{2/3}} + O(\epsilon^{2})\right)$$
$$\frac{F_{d}}{\gamma V^{1/3}} = \left(\frac{\pi}{2}\right)^{2/3} 3^{1/3} \epsilon + O(\epsilon^{2})$$
$$\tilde{F}_{d} \approx \left(\frac{\pi}{2}\right)^{2/3} 3^{1/3} (1 + \cos\theta)$$
$$\approx 1.95 (1 + \cos\theta)$$
(S8)

Comparison between simulation and analytic results

Table S1: Comparison between simulation and analytic results. Body and surface \tilde{F}_d values are obtained numerically by solving Young-Laplace equation, while analytic \tilde{F}_d is calculated using Equation 5 in the main text. For $\theta > 140^\circ$, \tilde{F}_d values for all three simulation and analytic models are very close to one another (coloured cells).

θ	$1 + \cos \theta$	Body \tilde{F}_d	Surface \tilde{F}_d	Analytic \tilde{F}_d .
40°	1.77	5.31	1.56	3.44
50°	1.64	4.66	1.46	3.20
60°	1.50	4.01	1.37	2.92
70°	1.34	3.39	1.37	2.62
80°	1.17	2.80	1.35	2.28
90°	1	2.26	1.19	1.95
100°	0.83	2.80	1.35	2.28
110°	0.66	1.38	0.93	1.28
120°	0.5	1.02	0.76	0.97
130°	0.36	0.72	0.63	0.70
140°	0.23	0.46	0.39	0.46
150°	0.13	0.26	0.22	0.26
155°	0.093	0.18	0.18	0.18
160°	0.060	0.116	0.116	0.118
165°	0.034	0.066	0.067	0.066
170°	0.015	0.0295	0.0302	0.0296
175°	0.0038	0.0079	0.0077	0.0074