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Here we include results on the receding speed of the liquid-vapor interface during evap-

oration and a direct comparison of the nanoparticle concentration profiles along the z-axis

under the various evaporation schemes discussed in the main text.
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FIG. S1. Location of the receding liquid-vapor interface vs. time under various solvent evaporation

schemes: evaporating into a vacuum (red circles), evaporating at a fixed intermediate rate of jp

(the terminal plateau rate of the evaporating-into-vacuum scheme, green squares), and evaporating

at a fixed rate of js ≃ jp/3 (blue triangles). The lines are linear fits whose slopes yield the receding

speed of the interface, ve.

The location of the liquid-vapor interface during solvent evaporation is plotted against

time in Fig. S1. At a fixed evaporation rate, the liquid-vapor interface recedes almost

uniformly at a constant speed, ve. Under the evaporating-into-vacuum scheme, the interface

location varies with time nonlinearly and the rate of change decreases as time proceeds.

This reflects the fact that when the solvent vapor escapes into a vacuum, the evaporation

rate is initially high, then decreases with time, and eventually levels off in the long time

limit. For each data set included in Fig. S1, a linear fit is performed to determine ve.

For the evaporating-into-vacuum scheme, ve ≃ 1.4 × 10−3σ/τ . At the intermediate solvent

evaporation rate, ve ≃ 0.92× 10−3σ/τ and at the slow rate, ve ≃ 0.40× 10−3σ/τ .

The concentration profiles of α and β nanoparticles in the drying film of a thickness

of about 62σ are compared directly in Fig. S2. Under the slow evaporation rate, the two

types of nanoparticles phase separate more strongly and the middle α-layer is thicker. The
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FIG. S2. Concentration profiles of the two types of nanoparticles (α in orange and β in purple)

in the drying film at a thickness of ∼ 62σ under the three solvent evaporation schemes: (a)

evaporating-into-vacuum, (b) fixed intermediate rate, and (c) fixed slow rate. The arrows indicate

the width of the middle α-layer.

concentration of α nanoparticles in the bottom β-layer is also smaller in this case than under

the other two evaporation schemes.

To quantify the thickness of the middle α-layer, we identify the crossing points in the
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concentration profiles, as indicated by the arrows in Fig. S2. The thickness is computed as

the difference of the two crossing points, on the two sides of the α-layer, along the z-axis.

It is about 21σ for the evaporating-into-vacuum and intermediate-rate schemes and about

26σ for the slow-rate scheme.

Two sample input scripts for LAMMPS runs are provided: “in.binary equi 150.txt” and

“in.binary fix fast 150.txt”.

∗ chengsf@vt.edu


