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1. Intramolecular correlation function “«(K)
The intramolecular pair correlation function, ®ey(K) s the Fourier transform of the probability
distribution function of distances between two sites along the chain averaged over the sites of the
same chemical pairs (neglecting chain end effects). It enters the PRISM equations (Eq. 1 in the
main text) through the matrix (k), and carries the copolymer sequence information. For the Freely
Jointed Chain (FJC) model ! considered in the present study (fixed bond length [ =40/3 which
equals persistence length), Dy (K) for any given sequence of A/B copolymer is given by 3,
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where Ny =Nat Ny ifa#y and Nay =Na if a = Y, where N and Vg are the number of interaction

sites of types @ and 7, respectively, Ne+Ny =N is the total chain length and Ja and /v denote the
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sets of the indices for sites of type @ and 7, respectively. Eq. (1) provides a numerical method for

calculating W (K) for arbitrary A/B copolymer sequences.

2. Derivation of AC
In this section, we summarize some technical details of our calculations for the “collective” part

of friction, AZ, Recall from Eq.6 in the main text that
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. The dimensionless collective dynamic structure
factors S(kit) can be obtained by solving Eq. 8 in the main text using Laplace transforms 4°. The

form of solution is expressed as,

Soy(kt) = agexp( = At) + by exp( - Act) )
where %ay, b ay, AI, Ac are given as,
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where A(S) = 511522

been notationally suppressed for better readability. The dimensional dynamic partial collective
structure factors Sa®D are obtained as Sar(08) =PaSey D) \where Pay=Pa if a=y and
Pay =\[PaPy otherwise. Eq. (2) and Eq. (7) of the main text can then be substituted into Eq. (6) of

the main text to obtain the solution for 2Scm, We exchange the order of integration and perform the
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~512521, Note that all the variables are functions of wavevector k which has

integration over time t first in Eq. (6) in the main text analytically and thus obtain,

N ~ ~ AIZ G(Z Ba Ga'
j(; At (k) [CHOSk)C)] = #A;/ #AZ
_2n -1
where I =¥ Ds@0” (k) and Aay, Bay, Cay are,

Ay =C{ip1ayy + C13Ciapyyay; + CroCiypryas; + Chpynay,
By, = 6121/3111711 + C13C11P12b21 + C12C11P12b15 + Clzzpzzbzz
Ary = Cy3C1ap11ag; + CyyConpry@yy + Ciopyyany + C1yConpynayy
By, =C11C13p11b11 + C11Cyop1b15 + 6122921b21 + C15C25P25b7;
Ay = Cy3Cp1py1ay; + CF1p19815 + C13CoP01a51 + C1Conpirayy
By =C11C1p11b11 + C221P12b12 + C11C22P21b21 + C51C320 52D,
Ay = C15C01P11a51 + Cp1Coppry@yy + C1oC0nP 01001 + Coapyray,
By = C13C21P11b11 + Co1Cpp12b15 + C15C50051 D51 + szzpzzbzz
Gyq =MNq10q
Gy = MNypWp;
Gy = Ny1Wp
Gy, = MNpaWy)

(7

@®)



b

Cay = Coy (k) gre the site-site direct correlation functions, %, Pay are given by Egs. (3-6), the

Here,

=na+n

“ay matrix elements are given by Eq. (1), and "ar = e if @ =¥ and "ar v otherwise. Finally,

the per-monomer collective friction is calculated as,
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where V(k) is the defined as the dynamic vertex.
For homopolymer fluids, straightforward analytic analysis reveals that the above equation reduces

to a simpler expression given by,
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3. Structure factors and radial distribution functions
The SI Figure 1 shows the A-A and A-B structure factors and radial distribution functions

associated with their B-B counterparts that are shown in the main text Figure 3.
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Figure 1: (a) Partial A-A structure factor at the microemulsion crossover boundary €p/€s5 =1,
(b) Partial A-B structure factor at the microemulsion crossover boundary €p5/€p5 =1, (c) Partial
A-A radial distribution functions at the microemulsion crossover boundary €p5/€p3 =1, (d) Partial

A-B radial distribution functions at the microemulsion crossover boundary €p5/€pp =1,



4. Athermal copolymer friction.
SI Figure 2 shows that the expression for the friction constant formulated for the copolymer system
(Eq. 6 in the main text) reduces naturally in the athermal (no attractions) limit to the homopolymer

case by setting A58 =0,

—— Homopolymer

Multiblock Copolymer
M = 2, EBR = 0

100 |

AC/Cs

N = 256

107t ‘ ‘ ‘
0.2 0.3 0.4 0.5

¢

Figure 2: Per-segment collective friction (AS) normalized by the elementary local segmental

friction (f s), A/ asa function of . Circles are results for multiblock copolymer with block length

M =2 gnd at athermal condition by setting B-B attraction to be zero, Bepp =0



5. Correlation between friction and wavevector normalized structure factor peak
SI Figure 3a shows the growth of the wavevector normalized structure factor peak in a manner
complementary to Figure 8a of the main text. SI Figure 3b shows the correlation between the non-
dimensionalized per-monomer collective friction and wavevector normalized structure factor
peak, which is complementary to Figure 8b in the main text.
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Figure 3: (a) Growth of microdomain length scale normalized low wavevector structural factor
(k*)?Spp(k™) . . . €nnfEr _ _
peak, BB\" ) as as function of normalized interaction strength “BB! “BB. (b) Non-dimensional

*\2 *
per-monomer collective friction, ®5/Ss, as a function of (k*)°Spp(k™) N =256 =03



6. Dynamic vertex and its approximations
SI Figure 4 shows the comparison between the dynamic vertex and its two approximate simplified

forms discussed in the main text.
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Figure 4: Comparison between vertex V(k) and two approximations, V1K) gpa V200 (see main
text). Vil is shown in dotted lines and V20 is shown in dashed lines.
Vi(k) = pB(NB/N)kZCBzB(k)SBZB(k)(‘)BZB(k)/(SBB(k) + wgp(k)) and

V,(k) = pk*C*(k)S* (k) w? (k) / (S (k) + w (k).
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