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1. Intramolecular correlation function 𝜔𝛼𝛾(𝑘)

The intramolecular pair correlation function, , is the Fourier transform of the probability 𝜔𝛼𝛾(𝑘)

distribution function of distances between two sites along the chain averaged over the sites of the 

same chemical pairs (neglecting chain end effects). It enters the PRISM equations (Eq. 1 in the 

main text) through the matrix , and carries the copolymer sequence information. For the Freely Ω(𝑘)

Jointed Chain (FJC) model 1,2 considered in the present study (fixed bond length  which 𝑙= 4𝜎/3

equals persistence length),  for any given sequence of A/B copolymer is given by 3,𝜔𝛼𝛾(𝑘)

            (1)
𝜔𝛼𝛾(𝑘) =

1
𝑁𝛼𝛾

​

∑
𝑖 ∈ 𝐽𝛼

​

∑
𝑗 ∈ 𝐽𝛾

(𝑠𝑖𝑛(𝑘𝑙)/(𝑘𝑙))|𝑖 ‒ 𝑗|

where  if  and  if , where  and  are the number of interaction 𝑁𝛼𝛾= 𝑁𝛼+ 𝑁𝛾 𝛼 ≠ 𝛾 𝑁𝛼𝛾= 𝑁𝛼 𝛼= 𝛾 𝑁𝛼 𝑁𝛽

sites of types  and , respectively,   is the total chain length and  and  denote the 𝛼 𝛾 𝑁𝛼+ 𝑁𝛾= 𝑁 𝐽𝛼 𝐽𝛾
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sets of the indices for sites of type  and , respectively. Eq. (1) provides a numerical method for 𝛼 𝛾

calculating  for arbitrary A/B copolymer sequences.𝜔𝛼𝛾(𝑘)

2.  Derivation of  Δ𝜁

In this section, we summarize some technical details of our calculations for the “collective” part 

of friction, . Recall from Eq.6 in the main text that Δ𝜁

. The dimensionless collective dynamic structure 
Δ𝜁=

𝛽 ‒ 1

3

∞

∫
0

𝑑𝑡
​

∑
𝛼,𝛾

∫
𝑑𝑘

(2𝜋)3
𝑘2𝜔̃𝛼𝛾(𝑘,𝑡)[𝐶 ⋅ 𝑆̃(𝑘,𝑡) ⋅ 𝐶]𝛼𝛾

factors  can be obtained by solving Eq. 8 in the main text using Laplace transforms 4,5. The 𝑆(𝑘,𝑡)

form of solution is expressed as,

           (2)𝑆𝛼𝛾(𝑘,𝑡) = 𝑎𝛼𝛾𝑒𝑥𝑝( ‒ Λ𝐼𝑡) + 𝑏𝛼𝛾𝑒𝑥𝑝( ‒ Λ𝐶𝑡)

where , , ,  are given as, 𝑎𝛼𝛾 𝑏𝛼𝛾 Λ𝐼 Λ𝐶

            (3)

𝑎11 =
(Λ𝐼 ‒ Θ22)𝑆11 + Θ12𝑆21

Λ𝐼 ‒ Λ𝐶

𝑎12 =
(Λ𝐼 ‒ Θ22)𝑆12 + Θ12𝑆22

Λ𝐼 ‒ Λ𝐶

𝑎21 =
(Λ𝐼 ‒ Θ11)𝑆21 + Θ21𝑆11

Λ𝐼 ‒ Λ𝐶

𝑎22 =
(Λ𝐼 ‒ Θ11)𝑆22 + Θ21𝑆12

Λ𝐼 ‒ Λ𝐶

and

            (4)

𝑏11 =
(Λ𝐶 ‒ Θ22)𝑆11 + Θ12𝑆21

Λ𝐶 ‒ Λ𝐼

𝑏12 =
(Λ𝐶 ‒ Θ22)𝑆12 + Θ12𝑆22

Λ𝐶 ‒ Λ𝐼

𝑏21 =
(Λ𝐶 ‒ Θ11)𝑆21 + Θ21𝑆11

Λ𝐶 ‒ Λ𝐼

𝑏22 =
(Λ𝐶 ‒ Θ11)𝑆22 + Θ21𝑆12

Λ𝐶 ‒ Λ𝐼
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and

            (5)

Λ𝐼 =
Θ11 + Θ22

2
‒ (

Θ11 + Θ22
2

)2 ‒ (Θ11Θ22 ‒ Θ12Θ21)

Λ𝐶 =
Θ11 + Θ22

2
+ (

Θ11 + Θ22
2

)2 ‒ (Θ11Θ22 ‒ Θ12Θ21)

with

            (6)

Θ11 = 𝑘2𝐷𝑠𝑆22/Δ(𝑆)
Θ12 = Θ21 =‒ 𝑘2𝐷𝑠𝑆12/Δ(𝑆)
Θ22 = 𝑘2𝐷𝑠𝑆11/Δ(𝑆)

where . Note that all the variables are functions of wavevector , which has Δ(𝑆) = 𝑆11𝑆22 ‒ 𝑆12𝑆21 𝑘

been notationally suppressed for better readability. The dimensional dynamic partial collective 

structure factors  are obtained as  where  if  and 𝑆̃𝛼𝛾(𝑘,𝑡) 𝑆̃𝛼𝛾(𝑘,𝑡) = 𝜌𝛼𝛾𝑆𝛼𝛾(𝑘,𝑡) 𝜌𝛼𝛾= 𝜌𝛼 𝛼= 𝛾

 otherwise. Eq. (2) and Eq. (7) of the main text can then be substituted into Eq. (6) of 𝜌𝛼𝛾= 𝜌𝛼𝜌𝛾

the main text to obtain the solution for . We exchange the order of integration and perform the Δ𝜁𝐶𝑀

integration over time  first in Eq. (6) in the main text analytically and thus obtain,𝑡

           (7)

∞

∫
0

𝑑𝑡𝜔̃𝛼𝛾(𝑘,𝑡)[𝐶(𝑘)𝑆̃(𝑘,𝑡)𝐶(𝑘)]𝛼𝛾=
𝐴𝛼𝛾𝐺𝛼𝛾
Γ+ Λ𝐼

+
𝐵𝛼𝛾𝐺𝛼𝛾
Γ+ Λ𝐶

where  and , ,  are,Γ= 𝑘2𝐷𝑠𝜔
‒ 1(𝑘) 𝐴𝛼𝛾 𝐵𝛼𝛾 𝐺𝛼𝛾

           (8)

𝐴11 = 𝐶 211𝜌11𝑎11 + 𝐶11𝐶12𝜌12𝑎21 + 𝐶12𝐶11𝜌12𝑎12 + 𝐶
2
12𝜌22𝑎22

𝐵11 = 𝐶 211𝜌11𝑏11 + 𝐶12𝐶11𝜌12𝑏21 + 𝐶12𝐶11𝜌12𝑏12 + 𝐶
2
12𝜌22𝑏22

𝐴12 = 𝐶11𝐶12𝜌11𝑎11 + 𝐶11𝐶22𝜌12𝑎12 + 𝐶
2
12𝜌21𝑎21 + 𝐶12𝐶22𝜌22𝑎22

𝐵12 = 𝐶11𝐶12𝜌11𝑏11 + 𝐶11𝐶22𝜌12𝑏12 + 𝐶
2
12𝜌21𝑏21 + 𝐶12𝐶22𝜌22𝑏22

𝐴21 = 𝐶11𝐶21𝜌11𝑎11 + 𝐶
2
21𝜌12𝑎12 + 𝐶11𝐶22𝜌21𝑎21 + 𝐶21𝐶22𝜌22𝑎22

𝐵21 = 𝐶11𝐶21𝜌11𝑏11 + 𝐶
2
21𝜌12𝑏12 + 𝐶11𝐶22𝜌21𝑏21 + 𝐶21𝐶22𝜌22𝑏22

𝐴22 = 𝐶12𝐶21𝜌11𝑎11 + 𝐶21𝐶22𝜌12𝑎12 + 𝐶12𝐶22𝜌21𝑎21 + 𝐶
2
22𝜌22𝑎22

𝐵22 = 𝐶12𝐶21𝜌11𝑏11 + 𝐶21𝐶22𝜌12𝑏12 + 𝐶12𝐶22𝜌21𝑏21 + 𝐶
2
22𝜌22𝑏22

𝐺11 = 𝑛11𝜔11
𝐺12 = 𝑛12𝜔12
𝐺21 = 𝑛21𝜔21
𝐺22 = 𝑛22𝜔22
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Here,   are the site-site direct correlation functions, ,  are given by Eqs. (3-6), the 𝐶𝛼𝛾 ≡ 𝐶𝛼𝛾(𝑘) 𝑎𝛼𝛾 𝑏𝛼𝛾

 matrix elements are given by Eq. (1), and  if  and  otherwise. Finally, 𝜔𝛼𝛾 𝑛𝛼𝛾= 𝑛𝛼 𝛼= 𝛾 𝑛𝛼𝛾= 𝑛𝛼+ 𝑛𝛾

the per-monomer collective friction is calculated as,

           (9)
Δ𝜁=

Δ𝜁𝐶𝑀
𝑁

=
𝛽 ‒ 1

6𝜋2𝑁

∞

∫
0

𝑑𝑘𝑘4
​

∑
𝛼𝛾

𝐴𝛼𝛾𝐺𝛼𝛾
Γ+ Λ𝐼

+
𝐵𝛼𝛾𝐺𝛼𝛾
Γ+ Λ𝐶

≡
𝛽 ‒ 1

6𝜋2

∞

∫
0

𝑑𝑘𝑉(𝑘)

where  is the defined as the dynamic vertex. 𝑉(𝑘)

For homopolymer fluids, straightforward analytic analysis reveals that the above equation reduces 

to a simpler expression given by,

           (10)
Δ𝜁=

𝜌𝛽 ‒ 1

6𝜋2𝐷𝑠

∞

∫
0

𝑑𝑘𝑘2𝐶2(𝑘)
𝑆2(𝑘)𝜔2(𝑘)
𝑆(𝑘) + 𝜔(𝑘)

3. Structure factors and radial distribution functions

The SI Figure 1 shows the A-A and A-B structure factors and radial distribution functions 

associated with their B-B counterparts that are shown in the main text Figure 3.
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Figure 1: (a) Partial A-A structure factor at the microemulsion crossover boundary . 𝜖𝐵𝐵/𝜖
∗
𝐵𝐵= 1

(b) Partial A-B structure factor at the microemulsion crossover boundary . (c) Partial 𝜖𝐵𝐵/𝜖
∗
𝐵𝐵= 1

A-A radial distribution functions at the microemulsion crossover boundary . (d) Partial 𝜖𝐵𝐵/𝜖
∗
𝐵𝐵= 1

A-B radial distribution functions at the microemulsion crossover boundary .𝜖𝐵𝐵/𝜖
∗
𝐵𝐵= 1

5



4. Athermal copolymer friction. 

SI Figure 2 shows that the expression for the friction constant formulated for the copolymer system 

(Eq. 6 in the main text) reduces naturally in the athermal (no attractions) limit to the homopolymer 

case by setting .𝛽𝜖𝐵𝐵= 0

Figure 2: Per-segment collective friction ( ) normalized by the elementary local segmental Δ𝜁

friction ( ), , as a function of . Circles are results for multiblock copolymer with block length 𝜁𝑠 Δ𝜁/𝜁𝑠 𝜙

 and at athermal condition by setting B-B attraction to be zero, .𝑀= 2 𝛽𝜖𝐵𝐵= 0
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5. Correlation between friction and wavevector normalized structure factor peak

SI Figure 3a shows the growth of the wavevector normalized structure factor peak in a manner 

complementary to Figure 8a of the main text. SI Figure 3b shows the correlation between the non-

dimensionalized per-monomer collective friction and wavevector normalized structure factor 

peak, which is complementary to Figure 8b in the main text.

Figure 3: (a) Growth of microdomain length scale normalized low wavevector structural factor 

peak, , as as function of normalized interaction strength . (b) Non-dimensional (𝑘 ∗ )2𝑆𝐵𝐵(𝑘 ∗ ) 𝜖𝐵𝐵/𝜖
∗
𝐵𝐵

per-monomer collective friction, , as a function of . .Δ𝜁/𝜁𝑠 (𝑘 ∗ )2𝑆𝐵𝐵(𝑘 ∗ ) 𝑁= 256,𝜙= 0.3
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6. Dynamic vertex and its approximations

SI Figure 4 shows the comparison between the dynamic vertex and its two approximate simplified 

forms discussed in the main text. 

Figure 4: Comparison between vertex  and two approximations,  and  (see main 𝑉(𝑘) 𝑉1(𝑘) 𝑉2(𝑘)

text).  is shown in dotted lines and  is shown in dashed lines. 𝑉1(𝑘) 𝑉2(𝑘)

 and 𝑉1(𝑘) = 𝜌𝐵(𝑁𝐵/𝑁)𝑘2𝐶 2
𝐵𝐵(𝑘)𝑆

2
𝐵𝐵(𝑘)𝜔

2
𝐵𝐵(𝑘)/(𝑆𝐵𝐵(𝑘) + 𝜔𝐵𝐵(𝑘))

.𝑉2(𝑘) = 𝜌𝑘
2𝐶2(𝑘)𝑆2(𝑘)𝜔2(𝑘)/(𝑆(𝑘) + 𝜔(𝑘))

7. References

1          K. Schweizer and J. Curro, Atomistic Modeling of Physical Properties, 2006, 319–377.

2 K. S. Schweizer and J. G. Curro, in Advances in Chemical Physics, John Wiley & Sons,            
Ltd, 1997, pp. 1–142.

3 G. Shi and K. S. Schweizer, The Journal of Chemical Physics, 2023, 159, 044904.

4 D. C. Viehman and K. S. Schweizer, The Journal of Chemical Physics, 2008, 128, 
084509.

5 Y. Zhou and K. S. Schweizer, The Journal of Chemical Physics, 2020, 153, 114901.

8


