Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2023

Quantifying nematic order in evaporation-driven self-assembly of Halloysite nanotubes: Nematic islands and critical aspect ratio

Arun Dadwal,^a Meenu Prasher,^{*b} Pranesh Sengupta,^{b,c} and Nitin Kumar^{*a}

^a Department of Physics, Indian Institute of Technology Bombay Powai, Mumbai 400076, India.

^b Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400085, India

^c Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India

Fig. S1: Optical images of dried deposit, corresponding SEM images and height profiles at different σ for c = 1 wt. % (a-e), c = 10 wt. % (f-j) and c = 20 wt. % (k-o) respectively.

Fig. S2: SEM images of bare HNTs nanorods of c = 0.5 wt% at the centre ($\sigma \approx 0$) and at the edge ($\sigma \approx 1$) respectively. Due to the pronounced tendency to form clusters, we do not see nematic order even at the edge of the coffee ring.

Fig. S3: Non-monotonic behaviour between S and σ emerges as we increase HNT concentration, c. (a) c = 1 wt% (b) c =10 wt%.

Fig. S4: Distribution of local nematic order P(S) for nematic, isotropic and transition phase in our experiments.

Fig. S5: The effect of grid area A for calculating *S* in an SEM image. Clearly, the resulting $\langle S \rangle$ is independent of the choice of A over a range of 0.08 – 0.23 μ m².