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1. Collapse of a stochastic network under the action of cohesive forces

The problem discussed in this section emerges from the methods used to generate networks with 
cohesion of type II. As discussed in the main text, a Voronoi network generated in a cubic domain 
of edge size L (State 1) is subjected to large cohesion forces which cause it to collapse. 
Specifically, the network undergoes an instability, after which it is stabilized again in a state of 
significantly smaller volume (about 24.5% of the original volume, ) by the formation of inter-𝐿3

fiber contacts. We provide here supplementary information related to this collapse process. 

Cohesion forces produce in State 1 a hydrostatic stress state, characterized by a pressure . 𝑝𝑎𝑑ℎ(Ψ)
As  is (artificially) increased to produce collapse, loss of stability occurs at a critical value of the Ψ

pressure, , and a corresponding . Loss of stability may take place in the absence of cohesive 𝑝𝑎𝑑ℎ
𝑐 Ψ𝑐

forces, if the network is subjected to hydrostatic stress1,2. This leads to a response in compression 
characterized by an initial linear elastic regime, followed by an instability point and a plateau of 

small slope. The instability occurs at a critical applied pressure . Once inter-fiber contacts 𝑝𝑎𝑝𝑝𝑙
𝑐

form at larger strains, the stress-strain curve exhibits strain stiffening. This phenomenology is also 

seen in cellular materials subjected to compression and  is associated with the cell size and 𝑝𝑎𝑝𝑝𝑙
𝑐

cell wall material properties1. It should be emphasized that in this situation, as well as in the case 
discussed in the main text, the behavior is entirely elastic as fibers are not allowed to deform 
plastically in this model. 

Figure S1a shows the relationship between  and  evaluated with Voronoi networks of 𝑝𝑎𝑝𝑝𝑙
𝑐 𝑝𝑎𝑑ℎ

𝑐

various .  is the only relevant parameter in this context. The two critical pressures are 𝑤 𝑤
approximately equal. 

In both cases, the collapse is caused by the loss of stability of the structure and the associated mode 
involves many fibers and has complex topology. However, as shown in Fig. S1b, the data scales 
as 

. (S1)𝑝𝑎𝑝𝑝𝑙
𝑐 𝐸𝑓~𝑓(𝑤) = 102𝑤 = (𝜌𝑑2)2 ≈ (𝑑 𝑙𝑐0)4
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In eq. (S1), the last equality is based on the result , which was previously established for 𝜌𝑙 2
𝑐0 ≈ 1

this type of networks3. 

Note that if one takes a mean field view and assumes the instability to be associated with the Euler 

buckling of individual fibers, , where  is the Euler buckling force and hence, 
𝑝𝑐 𝐸𝑓 ≈ 𝑃𝑐 𝑙 2

𝑐0𝐸𝑓 𝑃𝑐

using the expression for the buckling force ,𝑃𝑐

, (S2)

𝑝𝑐

𝐸𝑓
≈

𝜋2𝐼𝑓

𝑙 2
𝑒𝑓𝑓

1

𝑙 2
𝑐0

=
𝜋3

64𝜅2( 𝑑
𝑙𝑐0

)4

where the effective length is expressed in terms of the actual beam length through a shape factor, 

. Requiring the constant of proportionality in eq. (S1) to be equal to , the shape 𝑙𝑒𝑓𝑓 = 𝜅𝑙𝑐0 𝜋3 64𝜅2

factor results . This is smaller than the value of  which corresponds to Euler 𝜅 = 0.16 𝜅 = 0.5
buckling of a column with constrained rotations at both ends. This implies that collective instability 
takes place in the network at a larger stress than the prediction of this simplified mean field model 

but, interestingly, the scaling of the critical stress with  reminiscent of the buckling of a single 
𝑑 𝑙𝑐0

beam is retained. 

           

Figure S1. (a) Critical pressure produced by cohesion forces leading to the collapse of networks in 

State 1 and of different , , shown versus the critical pressure applied  at the boundary of the 𝑤 𝑝𝑎𝑑ℎ
𝑐

same networks without cohesion which causes collapse, . (b) Critical pressure  scales as 𝑝𝑎𝑝𝑝𝑙
𝑐 𝑝𝑎𝑝𝑝𝑙

𝑐

the fiber aspect ratio to power 4, as predicted by eq. (S2).

2. Inter-fiber contacts 

Figure S2 shows the evolution of the number of contacts during deformation starting from State 2 
of networks of types I and II. The number of contacts in type I networks is negligible (smaller than 
5 in all cases). Type II networks form contacts even in the case without cohesion, . These Ψ = 0
are reminiscent of the contact that stabilize the structure after collapse. Although these do not carry 
load in State 2 when , they engage rapidly as deformation is applied. In cases with , Ψ = 0 Ψ > 0



contacts exist in the unloaded State 2 and persist during the deformation. The most interesting 
aspect of the results shown in Fig. S2 is that the number of contacts is approximately constant 
throughout the deformation, despite that the population of contacts evolves, i.e. some contacts 
open and other form. 

Figure S2. Number of contacts in the model for type I and type II networks with and without 
cohesion. The number of contacts in type I networks is smaller than 5 at all . 
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