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Supplementary Information  

Sliding Friction of a Pillar Array Interface: Part I  
 

S.1 Micropillar friction data (RT-RT) 

 

 

Figure S1 shows the interface for samples with 𝜆 = 1 (𝑛𝑜 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ) as they 

come in contact and before sliding. 𝜆 = 1  means both the samples have same interpillar spacing 

and are cured at room temperature (RT-RT). Fig. S1a shows the case of 𝜆 = 1 and misorientation, 

 = 0. Ideally there should be no dislocations because there is no mismatch, but edge nucleated 

dislocations [1] are seen to pass through the interface during sliding (video: 

V1_lambda=1_0_deg.avi. For a misorientation of 5 (Fig. S1b), an array of screw dislocations is 

formed, and density of dislocations increases as we increase the misorientation between two 

samples as seen in Fig S1 a) to e).  Figures S1c, S1d and S1e show an array of screw dislocations 

at misorientation angles, 𝜃 = 15°, 30° & 45°, respectively. The video for screw dislocation with 

𝜆 = 1 and 𝜃 = 5° is V3_lambda=1_5_deg_ ScrewDislocation.avi. 

Figure S2 a) to e) below shows shear stress versus displacement plots for pillar samples 

with 𝜆 = 1 and different misorientations  from 0° 𝑡𝑜 45° . 

 

 

Figure S1. Interfacial screw dislocations 

Interfacial dislocations between micropillar samples at 𝜆 = 1 for different           

misorientations 𝜃. a) 𝜃=0° b) 𝜃=5° c) 𝜃=15° d) 𝜃=30° e) 𝜃=45°. 
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(a)                                         (b)                                     (c) 

           
                   (d)                                       (e)                                           (f) 

Figure S2. 𝝀 = 𝟏: This figure presents friction data for 𝜆 = 1 at various misorientations 

𝜃 = 0°, 5°, 15°, 30° & 𝜃 = 45° and normal loads from 4,656 N/m2 to 23,281 N/m2. (a) 

Friction stress vs shear displacement for 𝜃 = 0° for normal load varying from 4,656 N/m2 

to 23,281 N/m2 (b) 𝜃 = 5° (c) 𝜃 = 15° (d) 𝜃 = 30° (e) 𝜃 = 45° (f) Friction stress vs 

normal stress for 𝜆 = 1 and at various misorientations 𝜃 = 0°, 5°, 15°, 30° & 𝜃 = 45° and 

normal load varying from 4,656 N/m2 to 23,281 N/m2. 
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S.2 Micropillar Friction data 60-RT and 110-RT 

Figure S3 shows arrays of dislocations on the interface at different orientation mismatch and 

different lattice mismatch for =1.006±0.001. Here, 60-RT means that one of the samples is cured 

at 60℃ and the other is cured at room temperature (RT). Fig S3a shows an image for edge 

dislocations and Fig S3b shows mixed dislocations where =1.006±0.001 and  = 5. Figures S3 

c) to e) show mixed dislocations for =1.006 at  = 15,  = 30 and  = 45 respectively. 

 

Figure S4 shows shear stress data for pillar sample with different lattice spacing with 𝜆 = 1.006. 

Each experiment is performed at certain 𝜆, 𝑎𝑛𝑑 𝜃 values at normal loads 4656 N/m2 to 23000 N/m2. 

Each experiment shows friction stress depends on normal load and increases at normal load is 

increased. Figures S4 a) to e) show shear stress vs displacement for 𝜆 = 1.006 for 𝜃 = 0, 𝜃 = 5, 

𝜃 = 15, 𝜃 = 30, 𝜃 = 45 respectively. Figure S4 f) shows friction stress versus normal stress for 

𝜆 = 1.006 at different values of 𝜃 and normal stress. 

 

 

 

 

 

 

 

 

 
Figure S3 𝝀 = 𝟏. 𝟎𝟎𝟔 : Interfacial dislocations 

Interfacial dislocations between micropillar samples at 𝜆 = 1.006 at different           

orientations, 𝜃. a) 𝜃=0° b) 𝜃=5° c) 𝜃=15° d) 𝜃=30° e) 𝜃 = 45°. 
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Figures S5 and S6 shows results from a set of experiments is performed for a 110-RT sample i.e., 

lattice mismatch =1.023±0.001 and at various misorientations. Here, 110-RT means that one of 

the samples is cured at 110℃ and the other one is cured at room temperature (RT). The interface 

of two samples shows an array of edge and screw dislocations. In the first case (Fig. S5a) where 

=1.023±0.001,  = 0, an array of edge dislocations is formed. As the misorientation angle, , is 

further increased to 5°, 15°, 30° & 45°, arrays of mixed dislocations are subsequently formed as 

shown in figures S5 b) to e). And, it can also be seen from the figures, that if misorientation angle 

is increased, the density of dislocations increases[1]. Figures S6 a) to e) show variation of shear 

stress vs shear displacement at different misorientations from S6 a) to S6 e). Figure S6 f) shows 

variation of shear stress with normal stress when =1.023 and is performed for various 

misorientations, = 0°, 5°, 15°, 30° & 45° and normal stresses.  

 

 

 

 

                   (a)                                       (b)                                           (c) 

 

                   (d)                                       (e)                                           (f) 

Figure S4 𝝀 = 𝟏. 𝟎𝟎𝟔: Friction data for 𝜆 = 1.006 at various misorientations 𝜃 =

0°, 5°, 15°, 30° & 45°. (a) Friction stress vs shear displacement for 𝜃 = 0° for normal load 

varying from 4,656 N/m2 to 23,281 N/m2 (b) 𝜃 = 5° (c) 𝜃 = 15° (d) 𝜃 = 30° (e) 𝜃 = 45°. (f) 

Friction stress vs normal stress for 𝜆 = 1.006 and at various misorientations 𝜃 =

0°, 5°, 15°, 30° & 45° and normal load varying from 4,656 N/m2 to 23,281 N/m2. 
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This video shows an experiment for 𝜆 = 1.023 and 𝜃 = 0°,   

V8_lambda=1.023_0deg_EdgeDislocation 

This video shows an experiment for 𝜆 = 1.023 and 𝜃=5°, showing mixed dislocations with 

character of both an edge and a screw dislocation, 

V10_lambda=1.023_5_deg_MixedDislocation.avi 

 

 

 

               

 

 

  

 
Figure S5: 𝝀 = 𝟏. 𝟎𝟐𝟑 Interfacial dislocations 

Interfacial dislocations between micropillar samples at 𝜆 = 1.023 at different           

orientations. a) 𝜃=0°, b) 𝜃=5°, c) 𝜃=15°, d) 𝜃=30°, (e) 𝜃=45°. 
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                   (a)                                       (b)                                           (c) 

  

                   (d)                                       (e)                                           (f) 

Figure S6: 𝝀 = 𝟏. 𝟎𝟐𝟑: This figure represents friction data for 𝜆 = 1.023 at various 

misorientations 𝜃 = 0°, 5°, 15°, 30° & 𝜃 = 45°. 

(a) Friction stress vs shear displacement for 𝜃 = 0° for normal load varying from 4,656 

N/m2 to 23,281 N/m2 (b) 𝜃 = 5° (c) 𝜃 = 15° (d) 𝜃 = 30° (e) 𝜃 = 45° (f) Friction stress 

vs normal stress for 𝜆 = 1.023 and at various misorientations 𝜃 = 0°, 5°, 15°, 30° & 45° 

and normal load varying from 4,656 N/m2 to 23,281 N/m2. 
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S.3 Single pillar-pair experimental data 

 

This section shows all data for single pillar-pair experiments where shear force depends on two 

parameters, diametric overlap, 𝑙𝑥 and height of contact, 𝐻𝑐. Figure S7 a) to e) give the variation of 

shear force with respect to displacement in sliding direction for several cases of diametric overlaps 

varied from 100 % (Fig S7 a) to 0% (Fig. S7 e) and various height to contact from 4.8 mm to 0.8 

mm in gaps of 1 mm.  (Video V19_Singlefiber_4.8mm_100%O shows single pillar sliding 

experiment at 100% Overlap and 4.8 mm as height of contact,). 

 

 

 

 

 

 

 

 

 

 
Figure S7. Single pillar experiment data: Variation of Shear force with displacement for 

different diametric overlaps and height of contact (Hc). (a) 100% diametric overlap (𝑙𝑥 = 1) (b) 

75% (𝑙𝑥 = 0.75)  (c) 50% (𝑙𝑥 = 0.50)  (d) 25% (𝑙𝑥 = 0.25) (e) 0% (𝑙𝑥 = 0). 

 

 

100% Overlap 75% Overlap 50% Overlap

25% Overlap 0% Overlap

a) c)

e)

b)

d)

, � = 1 , � = 0.50, � = 0.75

, � = 0.25 , � = 0
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Figure S8 shows variation of Normal force vs displacement in sliding direction for different 

diametric overlaps and height of contact. Fig S8 a) shows variation of normal force with 

displacement for 100% diametric overlap for different height of contact ranging from 4.8 mm to 

0.8 mm in gaps of 1 mm. Similarly, figures 8 b) to 8 e) show variation of normal force with 

displacement for different heights of contact at diametric overlaps as 75%, 50%, 25 %, 0% 

respectively. 

 

Single pillar experiments were also performed at a different aspect ratio of 2, i.e., height of pillar 

as 6 mm and diameter as 3 mm. Figure S9 shows variation of shear force with shear displacement 

for different height of contact from 6 mm to 2 mm. Figure S9 a) shows shear force variation for 

100% diametric overlap. Here, shear force for maximum height of contact is less than that obtained 

for 4.8 mm height pillar. The more elongated pillars (6 vs. 4.8 mm) are more compliant. Figures 

S9 b) to e) show shear force versus displacement for various diametric overlaps ranging from 75% 

to 0%. Figure S10 shows variation of normal force for experiments in Figure S9. Figure S10 a) to 

e) show variation of normal force vs displacement for single pillar experiment of height 6 mm and 

diameter 3 mm. (Video V20_singlefiber_6mm_100%O shows sliding experiment of single 

pillars with aspect ratio = 2 and 100% diametric overlap,). 

 
Figure S8. Single pillar experiment data: Variation of Normal force vs displacement in sliding 

direction for different diametric overlaps and height of contact. (a) 100% diametric overlap, 𝑙𝑥 =

1 (b) 𝑙𝑥 = 0.75  (c) 𝑙𝑥 = 0.50  (d) 𝑙𝑥 = 0.25 (e) 𝑙𝑥 = 0. 
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To better understand the role of adhesion forces in these single pillar-pair experiments, we also 

performed single pillar experiments with silicone oil as a lubricant. Figure S11 shows shear stress 

vs displacement for single pillar-pair experiments with lubricant. Figure S11 a) to e) shows data 

for different diametric overlaps from 100 % overlap to 0% overlap and height overlaps ranging 

from 6 mm to 2 mm in gaps of 1 mm.  The lubricant barely affects the force-displacement response 

in the early rising part.  The main difference is in the point of instability, which occurs very soon 

after the peak load in the shear response. 

 

 

 

 

 

 

Figure S9. Single pillar data for pillar of height = 6 mm and diameter = 3 mm. 

Variation of Shear force with displacement for different diametric overlaps and height of contact. 

(a) 100% diametric overlap, 𝑙𝑥 = 1 (b) 𝑙𝑥 = 0.75  (c) 𝑙𝑥 = 0.50  (d) 𝑙𝑥 = 0.25 (e) 𝑙𝑥 = 0. 
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Figure S11. Single pillar experiments (pillar height= 6mm and diameter= 3mm) with 

silicone oil as lubricant. 

Variation of Shear force with displacement for different diametric overlaps and height of contact. 

(a) 100% diametric overlap, 𝑙𝑥 = 1 (b) 𝑙𝑥 = 0.75  (c) 𝑙𝑥 = 0.50  (d) 𝑙𝑥 = 0.25 (e) 𝑙𝑥 = 0. 

 

 

 
Figure S10. Single pillar data for pillar height= 6 mm and diameter = 3 mm. 

Variation of Normal force vs displacement in sliding direction for different diametric overlaps 

and height of contact. (a) 100% diametric overlap, 𝑙𝑥 = 1 (b) 𝑙𝑥 = 0.75  (c) 𝑙𝑥 = 0.50  (d) 𝑙𝑥 =

0.25 (e) 𝑙𝑥 = 0. 
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Comparing single pillar experiments with aspect ratio = 2, with and without lubricant in figure S13 

a) to e). Here, shear force for both the experiments is compared and we can see shear force for 

both the experiments are not that different and have similar peak force, which allows us to neglect 

adhesion in our model.  

 

 

 

 

 

 

 

 

 

 

Figure S12. Single pillar experiments (pillar height= 6mm and diameter= 3mm) with silicone 

oil as lubricant. 

Variation of Normal force vs displacement in sliding direction for different diametric overlaps and 

height of contact. (a) 100% diametric overlap, 𝑙𝑥 = 1 (b) 𝑙𝑥 = 0.75  (c) 𝑙𝑥 = 0.50  (d) 𝑙𝑥 = 0.25 

(e) 𝑙𝑥 = 0. 
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Figure S14a shows how shear force varies with displacement for different heights of contact and 

100% diametric overlap in single pillar experiments with colored squares as fits. Figure S14b 

shows how normal force varies with displacement for different heights of contact and 100% 

diametric overlap in single pillar experiments with colored squares as fourth order fits. Figures 

S14c-h show fits for shear force and normal force at various diametric overlaps, 𝑙𝑥 = 75%, 50%, 

25%, 0%. (Video V21_Singlefiber_6mm_100%O_siliconeoil.avi shows single pillar experiment 

with silicone oil as a lubricant,). 

 

 

 

Figure S13. Comparison of shear force for single pillar experiments with and without silicone 

oil (pillar height = 6mm, diameter =3 mm). 

Variation of Shear force with displacement for different diametric overlaps and height of contact. 

(a) 100% diametric overlap, 𝑙𝑥 = 1 (b) 𝑙𝑥 = 0.75 (c) 𝑙𝑥 = 0.50 (d) 𝑙𝑥 = 0.25 (e) 𝑙𝑥 = 0. 

 

 



13 

 

 

 

        
                  (a)     (b) 

 
                  (c)     (d) 

  
                  (e)     (f) 

   
                  (g)     (h) 

 

Figure S14. Performing quartic fits for single pillar friction data 

(a) Shear force as a function of displacement for 100% overlap, 𝑙𝑥 = 1. (b) Normal force as a 

function of displacement for 100% overlap, 𝑙𝑥 = 1. (c) Shear force as a function of displacement 

for 75% overlap. (d) Normal force as a function of displacement for 75% overlap. (e) Shear force 

as a function of displacement for 50% overlap. (f) Normal force as a function of displacement for 

50% overlap. (g) Shear force as a function of displacement for 25% overlap. (h) Normal force as 

a function of displacement for 25% overlap.  
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Contour plots for four fitting coefficients for shear and normal force are provided in Figure S15. 

Each contour plot gives a surface function for a fitting parameter. Figure S15a describes contour 

plots for shear force parameters at different heights and overlaps. Figure S15b describes contour 

plots for normal force parameters at different heights and overlaps.  

 

 

 

 

 

 

 

    
(i)                                                                   (ii) 

     
    (iii)                                                                           (iv) 

 Figure S15. a) Contour plots for four shear force constants   

    
    (i)                                                                           (ii) 

    
    (iii)                                                                           (iv) 

Figure S15. b) Contour plots for four normal force constants 
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S4. Equivalence of Summation of Forces and an Energy Argument to Estimate Friction.  

1D Edge Dislocation: 

First, we consider a simple case in which the two pillar arrays are perfectly aligned but have 

different lattice spacing in one direction.  This results in the formation of an array of edge 

dislocations, and we derive the relationship between macroscopic friction and interaction of pairs 

of pillars.  We do so in two ways: (a) by summing up forces and, (b) by an energy argument; we 

show that the result is the same.  

 Consider Fig S16 which shows two lattices colored blue and red.  The lattices are in perfect 

orientational alignment, with 100% overlap.  The lower blue lattice has pillars in a square array 

with lattice spacing of 𝑎𝑙 in both directions.  The upper red lattice has the same lattice parameter 

in the ‘x’ direction but a different lattice parameter in the ‘y’ direction: 

                       𝑎𝑢 = (1 + 𝜀)𝑎𝑙                            (S1) 

The displacement between red and blue pillars is   

            𝑢 = 𝑛(𝑎𝑢 − 𝑎𝑙) = 𝑛((1 + 𝜀)𝑎𝑙 − 𝑎𝑙) = 𝜀𝑛𝑎𝑙 = 𝜀𝑥         (S2) 

In particular when the displacement becomes 𝑎𝑢, then the corresponding spacing 𝑥∗ is the period 

of the edge dislocation array. 

𝑥∗ = 𝑎𝑢 𝜀⁄                        (S3) 

The shear force on a pillar is a function of overlap and displacement.  

                       𝑇 = 𝑇(𝑢) = 𝑇(𝜀𝑥)             (S4) 

The local frictional stress is this shear force divided by the unit cell area  

                       𝜏 =
𝑇

𝑎𝑙𝑎𝑢
                    (S5) 

which is a function of 𝑥. The average friction stress is then given by  
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                      𝜏𝑎𝑣 =
∫ 𝑇(𝑥)𝑑𝑥
𝑥∗

0

𝑎𝑙𝑎𝑢𝑥∗             (S6) 

Using (S3) and changing variables to u using (S2) we get 

                      𝜏𝑎𝑣 =
∫ 𝑇(𝑢)𝑑𝑢
𝑢∗

0

𝑎𝑙𝑎𝑢
2 =

𝑤

𝑎𝑙𝑎𝑢
2            (S7) 

That is, macroscopic friction stress equals energy lost by each pillar in one loading cycle per unit 

cell area per frictional sliding distance of 𝑎𝑢.  In fact, we can more directly obtain (S6) by an 

energy argument as follows.  Imagine relative sliding of one surface with dimensions 𝐿𝑥, 𝐿𝑦 ≫ 𝑏𝑢  

over the other by a distance of 𝑎𝑢 in the ‘y’ direction.  The state of the interface is identical to 

when the sliding was started, i.e., each pillar has gone through a full loading cycle and dissipates 

energy of  

𝑛𝑥𝑛𝑦𝑤 =
𝐿𝑥𝐿𝑦𝑤

𝑎𝑙𝑎𝑢
= 𝜏𝑎𝑣𝐿𝑥𝐿𝑦𝑎𝑢 ; 

                        𝜏𝑎𝑣 =
𝑤

𝑎𝑙𝑎𝑢
2           (S8) 

This simple calculation serves to demonstrate that the summation of forces is equivalent to 

summation of energy loss per pillar.   

 

Figure S16. Red and blue arrays of pillars with mismatch in lattice parameter along the ‘y’ 

direction. This leads to the formation of edge dislocations. 
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S5: Relationship between Moire’ patterns, dislocation arrays, and Burgers vectors  

 

(a)                                                                              (b) 

 

 

(c)              (d)                  (e) 

Figure S17. Geometric representation of dislocations and Burgers vector 

(a) Optical image of pillar interface: screw dislocations at misorientation,  = 5, 𝜆 = 1 , (b) 

Zoomed in version of image showing overlapping pillars on top and bottom samples (black and 

red circles). Burgers vector is parallel to the dislocation line. (c) Black square lattice 

representing the bottom sample (d) Black and red lattice at overlapping at misorientation, 𝜃 = 

5, 𝜆=1.0, producing screw dislocations. Burgers vector (�⃗� 1) is associated with dislocation line 

𝐴𝐴” and runs parallel to it. (e) Black and red lattice at lattice mismatch, 𝜆=1.2, & 𝜃 = 0,  

producing  edge dislocations. Burgers vector (�⃗� 1) is associated with dislocation line 𝐶’𝐶” and 

runs perpendicular to it. 
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A closer look at the interface (Figs. S17a, b) helps to understand better how we assign screw or 

edge character to a dislocation.  Observe in Fig. S17b (zoomed in figure S17a.), how the relative 

locations of the red and black circles change as one traverses along a line of pillars. To explain 

graphically how orientational disregistry gives rise to screw dislocations and lattice parameter 

mismatch to edge dislocations, consider a black square lattice (Fig. S17c). Now, a red square lattice 

is put on top of black lattice and rotated by 5° -- a Moiré pattern appears (Fig. S17d). A circuit is 

made around a dislocation line in a clockwise direction (Fig. S17d), starting with each step of the 

circuit connecting red lattice sites and going back to the initial point by connecting black lattice 

sites. When this Burgers circuit is completed, it fails to fully close on itself and the vector linking 

the end of the circuit to the starting point is the Burgers vector. The Burgers vector can be thus 

obtained by moving from point 𝐴′ to point 𝐴 in the bottom sample (black), and from point 𝐴 to 

point 𝐴" in the top sample (red) as in Figure S17d. It is evident that the Burgers vector is �̅�1 =

𝐶𝐶”  and �̅�2 = 𝐴”𝐴′ for screw dislocations in Fig. 4d and in Fig. S17e, �̅�1 = 𝐴𝐴”  and �̅�2 = 𝐶𝐶” 

for edge dislocations. (The Burgers vector for a screw dislocation is parallel to the dislocation line 

and for an edge dislocation it is perpendicular to the dislocation line as in Fig S17d and S17e.) 
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S6: Model for an edge dislocation in a shape complementary pillar interface. 

 
 

 
Figure S18. Schematic drawing of a patterned shape-complementary interface with a small 
difference in period of the pattern which is accommodated by periodic edge dislocations. 
  
Consider Figure S18 in which two patterned surfaces are pressed into each other.  The pattern 
period is slightly different: 

 ( )2 1 11 ; 1w w w  = + =   (S9) 

Thus, if we start with a pillar pair where the pillar on one side perfectly matches the channel on 
the other, then at a length L the interface accumulates enough mismatch to equal the period w1. 
The system there spontaneously introduces a dislocation, and the mismatch is reset to zero. This 
period of the array of dislocations, L, is given by 

( ) ( )

( )

( )

1 2

1 1 1

1 1

1 / 1 1 /

/ 1 /

n w nw n n

n

L nw w w



 

 

+ =  + =

 = − =

= = − =

   (S10) 

where n is the number of pillars in period L. Now, the mismatch between the lower and upper 
parts of the interface is accommodated by a combination of shear and stretch or compression in 

the plane. In the limit where the pillars are very compliant, all the shear mismatch is in the pillars, 
and this is a linearly increasing function of x between 0 and L.  This is the situation for the 

experiments reported in this paper.  In the limit where the pillars are very stiff, the pillars do not 
bend and all the mismatch is accommodated by in-plane deformation.   

To see this more concretely, consider a force balance as shown in Fig. S18 where σ is the 

uniaxial stress, u is the in-plane displacement, u1 is the mismatch of the pillars, and t is the 
thickness of the sample. Force balance in x gives  

 ( )1 0b

d
t k u u

dx


− − =  (S11) 

w1

L

w2

( )1bk u u−
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 where kb is the shear stiffness of the layer of pillars and u1 is 

     
1 1

x
u w

L
=       (S12) 

Replacing σ by 
du

E
dx

 , where E is the Young’s modulus, we get  

 

2

12
0b

d u x
Et k u w

Ldx

 
− − = 

 
 (S13) 

Normalize as  

 

1

2
2

1

/ ;

/ ;

b

u u w

k L

Et

x x L

L du

Ew dx






=

=

=

= =

 (S14) 

to get  

 ( )
2

2

2
0

d u
u x

dx
− − =  (S15) 

Its solution is 

 ( ) ( )cosh sinhu x A x B x = + +  (S16) 

The boundary condition at ( )0 0u x = =  implies that A=0.  The second boundary condition is  

( ) ( )

( )

1 0; 1 0

1

cosh

du
x x

dx

B



 

= = = =

= −

    (S17) 

So that the solution is 

( )

( )

( )

( )

sinh

cosh

cosh
1

cosh

x
u x

xdu

dx



 






= −

= = −

     (S18) 

Consider the limit 0 → , where the beam is compliant.   

0;

0.

u



→

→
       (S19) 

This is the limit in our experiments. If  → , the beam is stiff compared to the backing, then for 

locations far from the dislocation, which brings the pillars into perfect registry. 
;

1.

u x



→

→
       (S20) 

The foregoing serves to illustrate how the pillar-pillar interface can exhibit both limits, the one 
reported in this paper and the one that is closer to that commonly found in crystalline boundaries. 
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Videos 

1. V1_lambda=1_0_deg.avi: This video shows an interface of pillars at 𝜆 = 1, 𝜃 = 0° at a 

5x magnification and 0.5V/0.0745N normal load. 

2. V3_lambda=1_5_deg_ ScrewDislocation.avi: This video shows an interface of pillars at 

𝜆 = 1, 𝜃 = 5° at a 5x magnification and 0.5V/0.0745N normal load. 

3. V8_lambda=1.023_0deg_EdgeDislocation: This video shows an interface of fibrils at 

𝜆 = 1.023, 𝜃 = 0° at a 2x magnification. 

4. V10_lambda=1.023_5_deg_MixedDislocation.avi: This video shows an interface of 

fibrils at 𝜆 = 1.023, 𝜃 = 5° at a 5x magnification and 0.5V/0.0745N normal load. 

5. V19_Singlefiber_4.8mm_100%O: This video shows single pillar pair experiment (aspect 

ratio=1.6) at 100% diametric overlap and 4.8 mm as the height of contact. 

6. V20_singlefiber_6mm_100%O: This video shows single pillar pair experiment (aspect 

ratio=2) at 100% diametric overlap and 6 mm as the height of contact.  

7. V21_Singlefiber_6mm_100%O_siliconeoil: This video shows single pillar pair 

experiment (aspect ratio=2) at 100% diametric overlap and 6 mm as the height of contact 

with silicone oil.  
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