
6 Supplementary Information

6.1 Construction of circular conical sections
In the main text, we describe how we divide the flat annulus into
two regions – an inner region composed of isosceles triangles, and
an outer region composed of arc sectors. The main text describes
how the inner triangles can isometrically deform under an inner
displacement (or contraction) of length ∆ by tilting about the nor-
mal to the inner boundary – this gives an inner ‘buckled’ solution.
Here, we describe how to construct the outer solution whereby
the arc sectors isometrically bend into sections of right-circular
cones. In other words, each arc bends into a circular profile.

Fig. 6 Isometrically constructing a sector of a cone from a flat arc
sector. (a) The flat configuration. (b) The curved configuration; the
actual conical sector and its variables are depicted in black, the triangle
△AOB formed by the edges of the two adjacent tilted triangles, along
with its variables, is in blue, and the putative cone with its variables is
in grey.

The requisite variables for our geometric construction are de-
scribed in Fig. 6. In the flat state, each arc sector, lying between
two adjacent flat triangles, subtends an angle φ f at the common
vertex of these two triangles. If the edges of the triangles have
length R f , then the length of the largest arc is S = R f φ f . On tilt-
ing, the edges of these same triangles approach each other, so that
they subtend a reduced angle φt (see SI Fig. 7a). This reduction
in angle (∆φ = φt − φ f ≤ 0) constitutes the effective compressive
strain εcone = ∆φ/φ f for the arc sector. SI Fig. 7a shows the evo-
lution of εcone with boundary contraction ∆. We see clearly that
narrower sheets feel a greater εcone for the same ∆.

The excess material can be accommodated by bending the sec-
tor into a cone. The exact shape of this cone can be determined
by solving the Elastica equation with the appropriate boundary
conditions. However, for simplicity, in this paper we choose to
approximate the exact shape by a circular cone. The aim then is
to find the circular cone that fits in between the two adjacent tri-
angles while exactly accommodating the excess angle ∆φ . Fig. 6b
shows all the variables needed for this operation. The isomet-
rically bent conical section has to fit inside the triangle △AOB
(drawn in teal) defined by the apex 0 and the tilted edges OA
and OB (see also Fig. 3 in main text). The conical section itself

is drawn in bold black. Let the circular cone have angular extent
φc, and let its maximum radius be ρc, centred at point C. Then
the conical shape can be determined from the following set of
geometric constraints.

The first constraint is that of inextensibility, i.e. length conser-
vation. This gives us:

S = ρcφc = R f φ f . (8)

The second constraint involves specifying the end-to-end distance
S1 between points A and B. Thus, using the blue triangle △AOB
and the grey triangle △ACB in Fig. 6b, we have:

S1 = 2ρc sin(φc/2) = 2R f sin(φt/2). (9)

Eqns. (8) and (9) constitute a set of simultaneous equations for
the cone variables ρc and φc, since R f and φ f are fixed by the flat
geometry, while φt is set by the tilt of the neighbouring angles.
Finally, using basic trigonometry, we have for the cone’s apex an-
gle:

sinβ = ρc/R f . (10)

In sum, we have three independent equations for three un-
knowns: φc, ρc and β (all positive-definite), which fully specify
the cone in space (including the centre C). SI Fig. 7b shows a rep-
resentative solution of such a constructed cone. SI Fig. 7c shows
the evolution of this construction with increasing ∆.

6.2 Correcting for scalloped arc sectors
The flat arc sectors as defined above – circular arcs with their ori-
gin at the inner boundary – lead to the creation of a flat shape that
is in fact a scalloped annulus, whose outer circumference 2mR f φ f

is greater than the expected 2π(1+w).
We can correct for this length discrepancy when construct-

ing the bent cones, by changing R f → χR f in Eq. (8) where

χ =
π(1+w)
mR f φ f

≤ 1. Eq. (9) remains unchanged since it specifies the
end-to-end-distance, which is set by the neighbouring tilted tri-
angles. We note that this factor χ is smallest for samples with
small w and m (wide splay η), and becomes ≈ 1 for large w and
m (narrow splay).

6.3 Calculating the conical strain εcone(∆)

The inset of Fig. 7a shows the evolution of the conical strain εcone

with contraction ∆ for our cone-triangle construction. The obser-
vations (plotted with dots) show that εcone(∆) is linear, with the
slope depending significantly on the width w of the sheet, but in-
dependent of the wavenumber m. To understand this behaviour,
we analytically derive an expression for εcone(∆) = (φt −φ f )/φ f .

Since φ f is fixed by the initial configuration, to find εcone, we
only need to calculate φt(∆). The angle φt(∆) can be calculated
given any one of the inner triangles, the flat arc angle φ f , and
the tilt angle α. We use the triangle △OPQ from Fig. 7a, located
in the x− y plane. The annular width w gives the height of the
triangle, while h gives its base. Now, instead of rotating about
O, we choose to rotate the triangle about its mid-line. For this,
we let X be the mid-point of OP, and we set it to be the origin
(0,0), as shown in Fig. 8. In similar fashion, we define Z to be the
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Fig. 7 Constructing a single cone (a) Two adjacent flat triangles (in yellow) subtending an angle φ f tilt towards each other by angle α. The tilted
triangles (in deep blue) subtend a smaller angle φt . Thus, the region between the triangles (shown approximately as a violet triangle) gets squeezed
by an angle ∆φ = φt −φ f . (inset) Evolution of the conical strain εcone = (∆φ)/φ f with ∆ for three different widths w. Model measurements are plotted
alongside the predicted lines of slope = −1/(1+w) (see Eq. 13). (b) To fit within the contracted boundary defined by OA and OB, the region must
bend into a circular cone of radius ρc, angular extent φc, axial length Lc and tilt angle β . The only ingredients needed for the construction are △AOB
and the tilt angle α(∆). (inset) Cross-section of the cone (in magenta) through △OAC, showing that the arc curvature κ and the normal curvature
κN are related by κN = κ cosβ . (c) The evolution of the conical solution with ∆ (here, 0.05 ≤ ∆ ≤ 0.6). Greater opacity means larger ∆; the cones
are translated with respect to each other for viewing clarity. (inset) As ∆ increases, the radius of curvature ρc decreases, and for ∆ → 1, attains an
asymptotic value of ρc ≈ πw

2m (dotted line).

Fig. 8 Diagram supporting the calculation in Sec. 6.3. Triangle OPQ is
the same as in Fig. 7a. Here, we give the points explicit coordinates (
shown in black text). For more details, see main text.

midpoint of the edge QR, so that the bisector of the cone is the
line OZ, shown as a dotted blue line in Fig. 8. The angle between
OQ and the blue dotted line is then φ f /2.

This triangle is then tilted clockwise out-of-plane about
−→
XQ

(parallel to the y-axis). Under this rotation, P → P′ and O → O′,
while X and Q remain unchanged. In this tilted configuration,
φt/2 is given by the angle between the rotated vector

−−→
O′Q and the

vertical blue plane defined by
−→
OZ. In what follows, we use vector

notation to denote both 3d and 2d vectors, precising their nature
where necessary. The steps for determining φt are as follows:

1. Find the 3-vector
−−→
XO′ = R−α ·−→XO, where Rα is the standard

3x3 rotation matrix of angle α about the y-axis (positive α

is considered anti-clockwise), and
−→
XO = (h/2,0,0) .

2. Then
−−→
O′Q =

−→
XQ−

−−→
XO′ = (−h/2cosα,w,h/2sinα).

3. We only need its orthogonal projection on to the x-y plane:
the 2-vector

−−−→
O′Q⊥ = (−h/2cosα,w).

4. We need the vector angle between this and the vertical blue
plane defined by

−→
OZ. Here,

−→
OZ = R−φ f /2 ·

−→
OQ, where

−→
OQ =

(−h/2,w,0) .

Finally, we have φt/2 = VectorAngle[
−−−→
O′Q⊥,

−→
OZ]. Calculating this

in a symbolic software like Mathematica, we get a complicated
trigonometric expression that depends on three variables: α, φ f ,
and the dimensionless triangle aspect ratio h/w.

To simplify this expression, we consider the regime of large m,
which corresponds to both small h/w and small φ f . Expanding
to first order in h/w, and using the exact relation cosα = 1−∆ to
replace α by ∆, we get:

φt = φ f −
h
w

∆+O((h/w)2) (11)

Thus, we get for the cone contraction factor:

εcone ≡
φt −φ f

φ f
≈− h

wφ f
∆. (12)
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Substituting h/w ≈ π

mw and φ f ≈
π(1+w)

mw (valid for large m), we
get:

εcone ≈− 1
1+w

∆. (13)

Eq. 13 predicts that, for large m, the slope of εcone vs. ∆ should
be given by the ratio of inner to outer radius of the annulus. We
plot this prediction as solid lines alongside the measurements in
the inset of SI Fig. 7a. The two are fully consistent. While Eq. 13
for the slope has been shown only in the regime of narrow cones,
in practice, we find it to be approximately valid even for wider
cones. The qualitative conclusion here is that, for given ∆, wider
annuli effectively feel less squeezed than narrower annuli in a
cone-triangle deformation, independent of the number of trian-
gles/cones.

6.4 Calculating bending energy for a cone
In this section, we continue with the variables introduced in
Sec. 6.1. A right-circular cone is made up of a series of cir-
cles whose radii ρ increase linearly with distance (say, ζ ) along
the cone axis, measured from the cone tip. For a cone of axial
length Lc (see SI Fig. 7a) and maximum radius ρc, we thus have:
ρ(ζ ) = ρc

Lc
ζ . We can also write ρc

Lc
= tanβ , where β is the cone’s

vertex angle.
Now, consider an infinitesimally wide circular band on the

cone, of radius ρ, angular extent φc, and width dζ

cosβ
. The band

has bending energy dU = B
2 × κ2

N × (φcρ)× dζ

cosβ
, where B is the

bending modulus and κN is the local normal (i.e. out-of-plane)
curvature. Given the geometry of the cone, we have κN = κ cosβ ,
where κ = 1/ρ is the arc curvature of the circular band. Thus
dU = B

2 × (cosβ/ρ)2 × (φcρ)× dζ

cosβ
. Simplifying and integrating

over an entire conical sector gives:

Ucone
bend =

B
2

φc cosβ

∫ Lc

0
dζ

1
ρ(ζ )

(14)

=
B
2

φc
cosβ

tanβ

∫ Lc

0

dζ

ζ
(15)

The singularity as ζ → 0 means that the conical shape must be
modified there. Thus we consider only the region beyond some
Lcore.

Ucone
bend =

B
2

φc
cosβ 2

sinβ
log(

Lc

Lcore
), (16)

where β = tan−1 ρc
Lc

. For the majority of numerical samples dis-
cussed in this paper, where m ≫ max{1,1/w}, it is sufficient to
use small-angle approximations for β . Thus, setting cosβ ≈ 1 and
sinβ ≈ β , Eq. (16) gets reduced to :

Ucone
bend ≈ B

2
φc

Lc

ρc
log(

Lc

Lcore
), (17)

Here, φc, ρc and Lc are all functions of the contraction ∆. But φc

and ρc are related through the constraint: φcρc = L =
π(1+w)

m (see
Eq. 8), and Lc ≈ w (the width of the annulus), so Ucone

bend can be
reduced to a function of the single dynamic variable ρc(∆). For
the entire annulus, we need to multiply this by the number of
cones 2m. Thus, we get:

Ucone
bend ≈ B

π(1+w)w
ρ2

c (∆)
log(

w
Lcore

), (18)

More generally, for a cone extending between axial limits Lmin

and Lmax, we have:

Ucone
bend (∆)≈ B

π(1+w)w
ρ2

c (∆)
log(

Lmax

Lmin
), (19)

This is the expression given in the main text.
While Eqs. (18) and (19) seem independent of m, it is not

so. Eq. (7) in the main text shows that ρc ∼ (1 + w)/m =⇒
U theory

bend ∼ m2, as expected of a bending energy. We note that this
ρc ∼ 1/m scaling could have been predicted in another way. In
the limit of maximum possible contraction (∆ → 1), the point C
approaches the xy-plane, and so the diameters of the 2m circles
must approximately equal the reduced projected outer perimeter:
2π(1+w−∆) → 2πw. This gives us: 4mρc → 2πw =⇒ ρc → πw

2m
(the dotted line in the inset of SI Fig. 7c). Indeed, even if C is off
the x-y plane (e.g. for smaller ∆), the diameters of the 2m circles
must still equal the reduced perimeter 2π(1+w−∆) up to some
factor. Thus, we have the scaling relation ρc ∼ 1/m as expected.

Finally, we note that the data presented in the paper represents
the full expression 16, without any approximation.

6.5 Limits of the cone-triangle construction
To the best of our knowledge, the above conical construction
works as long as the initial (flat) angle φ f < π, i.e. as long as
the edges of two adjacent triangles define a triangle. The value of
φ f depends on the width w and the wavenumber m, and increases
as m decreases. This defines a minimum wavenumber mcone

min (w)
below which a conical solution is invalid. For a sufficiently wide
annulus, we find that mcone

min = 2, which is the minimum possible
value for any wrinkled solution. However, for very narrow annuli,
this value goes up. Thus, for w = 0.2, we find mcone

min = 4. Fig. 9
shows two such contrasting geometries. mcone

min (w) defines a geo-
metric limit beyond which we expect our cone-triangle model to
fail. However, the main text shows that we already see significant
deviations from our model for Abaqus solutions with wavenum-
ber m significantly higher than mcone

min (w).

Fig. 9 Two different flat state geometries for w = 0.2. (Left) For m = 4,
the flat angle φ f < π, which allows the conical construction described in
Sec. 6.5. (Right) For m = 2, the flat angle φ f > π, which means that our
conical construction is not valid here.
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6.6 Comparison with separable, sinusoidal wrinkling
The cone-triangle shape described in the main text sharply re-
duces the elastic strain and energy relative to conventional wrin-
kling with height profile hc(r,θ) e.g. of the form17

hc(r,θ) = f (r)cos(mθ) (20)

as we now illustrate.
In the far-from-threshold regime, this hc profile must relax the

azimuthal strain εθθ arising from the inward displacement ur =

−∆. In general this azimuthal strain has the form2:

εθθ =
ur

r
+

1
r

∂θ uθ +
1

2r2 (∂θ hc)2 (21)

For purposes of comparison we may evaluate this ε at a zero of
hc(r,θ) e.g. mθ = π/2. There by symmetry the azimuthal dis-
placement uθ = 0 and ∂θ uθ = 0. Thus the second term in Eq. 21
vanishes. In the last term ∂θ hc =±m f (r). We use this expression
to estimate εθθ . Choosing hc(r,θ) to make εθθ vanish implies

∆ ≃ 1
2r

m2 f (r)2 (22)

So that f (r)≃ 1
m

√
2r∆

This non-constant f (r) entails a radial strain εrr given by2

εrr = ∂rur +
1
2
(∂rh)2 (23)

Here ur is constant as noted above and ∂rh ≃ ∂r f (r)≃ 1
m

1
2

√
2∆/r,

giving an estimated conventional wrinkle strain εc
rr of

ε
c
rr ≃

1
4

m−2(∆/r) (24)

This radial strain of conventional wrinkling is to be compared
to the bending strain εB in the cone-triangle model. This strain
arises from the bending stress σB

θθ
17

|σB
θθ | ≃ 2B(m/2πr)2, (25)

where bending modulus B is related to the thickness t, the Poisson
ratio ν and the bulk Young’s modulus E by39 Sec.12

B = Et
t2

12(1−ν2)
. (26)

Using ε = (Et)σ , then Eq. 25 yields

ε
B
θθ ≃ 2

t2

12(1−ν2)
(m/2πr)2 (27)

For the annuli simulated above the conventional wrinkles have
much greater elastic strain than the bending strain we report:
their ratio is given by

εc

εB ≃ m−4(r∆/t2)
(

6(1−ν
2)π2

)
(28)

Evidently for fixed m the ratio diverges as t → 0. For the specific
annulus used for Fig 5 with r = 1, ∆= 0.2, εc/εB ≃ 50. By these es-
timates the sinusoidal wrinkling carries substantially larger strain
and thence elastic energy relative to the isometric wrinkling we

report.

6.7 Departures from conical shape
Here we gauge the impact of the stretched zigzag vertices on the
total energy by examining how the elastic energy varies with dis-
tance r − 1 from the inner rim. Fig. 10a shows this energy for
the right-most data points of Fig. 5. The red simulation point
(lower curve) in Fig. 5 is found by summing the energies in each
azimuthal ring of finite elements over the range of r indicated by
the hashed region. The simulated ring energies for selected r are
shown as black rectangles.

The corresponding cone-triangle energy, i.e. the right-most
point on the (yellow) middle curve in Fig. 5, is found using the
cone ring energy plotted as a solid curve, using Eq. 5. This equa-
tion implies a ring energy varying as 1/(r− 1). Since the yellow
point is found by matching the simulated curvature at the outer
boundary, the cone model gives a ring energy that matches the
simulated ring energy there, as Fig. 10a shows.

By comparing the simulated ring energies with the cone model,
we can gain insight into the difference in energies seen in Fig. 5.
The inner simulation point shows the expected large discrepancy
with the model, which unrealistically diverges at the inner bound-
ary. The middle simulation point is at the inner boundary of the
region treated in Fig. 5. This ring energy is 40 percent smaller
than the cone model prediction. This difference is consistent with
the 15 percent differences between the energies of Fig. 5. Any
cone that would cure this discrepancy would have to extrapolate
to a vertex beyond the inner boundary.

The azimuthal strain profile shown in Fig. 10b also shows de-
partures from the model. The plot shows the azimuthal depen-
dence of the azimuthal strain εθθ for a radial position r equidis-
tant between the inner and outer boundaries.. The plotted strain
is maximal at peaks and troughs of the wrinkles. Though the av-
eraged strains,are consistent with bending strains, as discussed
in Sec. 3.1, there are strong oscillations adjacent to these peaks
and troughs with a period of two finite elements. This suggests
that our simulations have limited reliability for predicting these
weak strains near the peaks or troughs. Away from the peaks
and troughs the strains vary smoothly. Of special interest is the
point where the model cone and its adjacent triangle would meet.
These points, marked by dashed lines show no sign of discontinu-
ity.

These detailed features of Fig. 10 show shortcomings of the
cone-triangle model. However they underscore the relevance of
this model for understanding this form of buckling.

6.8 Finite-element method (FEM) simulation details
For our simulations, we used the commercial finite-element soft-
ware Abaqus 2018 (Simulia, Dassault-Systèmes, Providence, RI).
This section describes the different steps for generating a typical
simulation of our inner Lamé system, in the order typical of a
finite-element software.

The assembly consisted of only a single annulus, with in-
ner radius fixed and taken to be unity, and with varying width
w and thickness t in order to test our system over a wide
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Fig. 10 a) Energy distributions for the annulus of Fig. 5. Horizontal axis is radial distance from inner rim measured in finite element widths. Vertical
axis is ring energy described in the text. Hashed region shows the region treated in Fig. 5. Its area represents the simulated energy with largest ∆

on the lower curve of Fig. 5. Black marks show simulated ring energies at three selected radii. Solid curve shows the ring energy profile calculated
from cone-triangle model used for the middle curve in Fig. 5. b) Simulated azimuthal strain εθθ (in red) as a function of azimuthal finite-element
coordinate θ , for a material circle located at the middle of an annulus with (w = 0.33, t = 1.33×10−3, m = 10, ∆ = 0.27). Light curve in blue shows
height profile. Region spanning one trough and peak are shown. Variability of other troughs and peaks is similar. Vertical black lines indicate the
location of two consecutive cone-triangle boundaries.

range of system parameters. For width, we used values w =

0.20,0.33,0.67,1.0,1.67 (a factor of almost 10, ranging from very
narrow to moderately wide), and for thickness, we used values
t = 2.67×10−3,1.33×10−3,6.67×10−4,2.67×10−4,1.33×10−4 (a
factor of 20, ranging from moderately thick to very thin). While
these thickness values vary over a decade, the values still fall well
within the thin sheet limit. The annular part was made of 2d
shell quad (S4R) elements40. This choice was made mainly to
optimise speed, since we used a fine enough mesh to ensure that
doubling the linear mesh size change the energy by a negligible
amount (⪅ 1− 2%). For comparison, the coarsest mesh we used
was for the w = 1.67 annulus, with 60 elements across the ra-
dius and 1400 elements across a circle, giving a maximum linear
size for an element ≈ 0.01. For consistency checks however, we
also ran some simulations with annuli made of 3d volume cubic
(C3D8R) elements40, which gave the same morphology (with the
same wavenumber), but which much longer running times.

When discussing the material properties, for concreteness, we
will use SI units (and thus take the inner radius to be 1 m). For
the material properties, we mostly used a standard neo-Hookean
hyperelastic model40 with coefficients C10 = 1.5375×105 Pa, D1 =

3.2520 × 10−7 Pa−1. These coefficients are related to the more
well-known linear elasticity moduli by the relations: C10 = G/2
(where G is the shear modulus), and D1 = 2/K (where K is the
material bulk modulus). The corresponding Poisson ratio is given
by ν =

3/(C10D1)−2
6/(C10D1)+2 = 0.475. The Young’s modulus can be obtained

from either of the relations: E = 2G(1+ν), or E = 3K(1−2ν); we
obtain E = 907,377 Pa ≈ 0.9 MPa (corresponding to a rubber-like
material). As a test, we also performed several simulations with
a linear material model with these values of E and ν .

The elastic modulus can be used, along with the material den-
sity ρ and the average linear mesh size le, to determine the aver-

age integration time scale (i.e. the ‘stable time increment’) in the
simulation, as follows. The elastic bulk modulus K and the den-
sity ρ determine the speed of sound in the material, cs =

√
K/ρ ††.

The stable time increment in the simulation is on the scale of the
time required for elastic information to traverse an average mesh
element: ∆t ∼ le/cs. For our values of K ∼ 105 Pa, ρ = 103 Kg/m3

and le ∼ 10−2 m, we get ∆t ∼ 10−3 s. This in turn determines the
dimensionless number of iterations niter performed by the solver
in a simulation running over time period T : niter = T/∆t. Below,
we discuss the typical values of T used in our simulations, and
how increasing T allows us to reach a quasi-static limit in dy-
namic integration methods (i.e. where kinetic energy is present
but negligible compare to elastic energy).

For the radial displacement loading at the inner boundary, we
applied velocity and displacement boundary conditions (BCs) in-
terchangeably. Typically, we applied velocity BCs with a linear
amplitude profile, and displacement BCs with a smooth-step pro-
file40, in order to assure a smooth (i.e. zero velocity) pull at the
beginning. These were applied so that the maximum displace-
ment amplitude ∆max = 0.267 is attained within a time period T
(defined in the same units as the ∆t given above). The value of T
was chosen to be large enough to ensure small kinetic energy and
give a T -independent configuration, as defined below. Typically,
we used T = 20 for the thicker sheets, and T = 80 for the thinnest
sheets.

For the simulation protocol, we employed both ‘dynamic ex-
plicit’ and ‘dynamic implicit’40 integration schemes in the quasi-

†† Alternately, one can use the Young’s modulus E instead of the bulk modulus K in the
definition of cs. But this does not qualitatively alter our argument above.
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static limit (as compared to a fully ‘static’ energy minimisation
scheme). The word ‘dynamic’ refers to the presence of inertia,
while ‘explicit’ and ‘implicit’ refer to the solution scheme. ‘Ex-
plicit’ means explicit time-integration of Newton’s second law,
while ‘implicit’ refers to implicit integration (viz. through iterative
root-finding) of Newton’s law, using a modified Newton-Raphson
method. The mixture of these two methods was done partly as a
consistency check, partly for convenience, and partly by necessity.
While the implicit method in the quasi-static limit was faster for
most jobs, the explicit solver was indispensable for the thinnest
samples, where the static solver ran into convergence problems.
Ensuring the quasi-static limit is also easier for ‘dynamic implicit’
than for ‘dynamic explicit’. In dynamic implicit, the quasi-static
option is in-built, but for dynamic explicit, it has to be ensured
manually by applying the loading slowly enough so that further
slowing has no effect on the final shape and energy.

For this, we need to look at the available energy modes. The en-
ergy balance equation in Abaqus40 is given by (ignoring possible
terms coming from viscosity, friction, heat, contact and constraint
penalties, etc.), is:

EI +EKE −EW = 0 (29)

where EI is the internal energy, EKE is the kinetic energy, and EW

is the work done by externally applied loads. For us, the internal
energy is just the elastic energy (by design, there are no other
energy modes). Thus, for quasi-static loading, one generally re-
quires the kinetic energy (EKE) to be < 10% of the elastic energy
(EI). In practice, we kept the ratio to ⪅ 5%. Since the elastic
energy is thickness-dependent (always increasing with increas-
ing thickness), thinner sheets required slower applications of the
loading. E.g., for the thinnest samples (t = 1.33× 10−4), this in-
volved applying the contraction ∆ over a time period T = 80−120,
viz. using niter ∼ 105 solver iterations. As a result, the slowest
simulations, for the thinnest and widest sheets, lasted ≈ 150 core-
hours; the average simulation however, lasted between ≈ 30 core-
hours. For reference, the validation case (described blow) of fold-

ing a flat sheet into a cylinder, albeit with a much coarser mesh,
was accomplished using ≈ 0.2 core-hours.

For data extraction, we used field output for the displacement
variables, and history output for the energy40. For the elastic
energy, we used the “ALLIE" (internal energy) variable40, equiva-
lent to the EI variable in Eq. 29. Since the simulations are done
using a dynamic time-integration scheme with inertia, there is
an inherent noise in the energy values arising from imprecision
in finding the exact energy minimum (viz. due to inertial oscil-
lations). We cannot estimate this noise precisely, but a rule-of-
thumb estimate is ⪅ 5%, i.e. of the same order of magnitude as
the ratio EKE/EI . However, in reality, it might well be less. Sig-
nificantly, this noise cannot account for the discrepancy between
energy measurements and model predictions in Fig. of the main
text. Finally, post-processing was done using Abaqus2Matlab37.

6.9 Testing the numerics for known cases
We used the above procedures (albeit with a static energy minimi-
sation scheme) to calculate an analytically solvable case, to verify
that the shape and energy agreed with the known results. The ex-
ample was a rectangular sheet of width w = 1, length L = 2π, and
thickness t = 1× 10−3, in which we prescribed boundary condi-
tions on position and orientation of the short edges to make them
curve up and in, to form a circular cylinder of unit radius.

We verified the circularity of the cross-section by projecting
onto the plane and measuring the distance from the centre. We
found that no point differed in its axial distance by more than
.001%. The measured elastic energy differed only slightly from
the analytic result, Ucylinder

bend = Bπ ≈ 3.07 × 10−4 Joule, where
B = Et3/12(1− ν2) is the bending modulus, obtained using the
thickness t, Young modulus E and Poisson ratio ν quoted above.
The simulation gave an energy ≈ .01% larger than this. A dis-
crepancy of this sign is expected because the analytic form ne-
glects the small strain energy owing to the nonzero thickness of
the sheet simulated.
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