Supplementary Information for

Electrophoretic propulsion of matchstick-shaped magnetodielectric
particles in the presence of external magnetic fields in a nematic liquid crystal
Archana S^{1}, Devika V S ${ }^{1}$, Prasanna More ${ }^{2}$, Ravi Kumar Pujala ${ }^{2}$ and Surajit Dhara ${ }^{1 *}$
${ }^{1}$ School of Physics, University of Hyderabad, Hyderabad-500046, India
${ }^{2}$ Soft and Active Matter Group, Department of Physics, Indian Institute of Science Education and Research (IISER), Tirupati, Andhra Pradesh-517507, India

*To whom correspondence should be addressed: surajit@uohyd.ac.in

This pdf file includes the description of the following:

Figure S1- S7
Table S1
Movie S1-S3

1. Brownian motion of dipoles and quadrupoles in ZLI-2293 NLC

Isolated elastic dipoles and quadrupoles in a planar cell are video recorded and the particle trajectories are obtained using a suitable particle tracking software. The mean square displacement (MSD) is calculated from the x - and y-position coordinates which vary linearly with time delay τ (Fig. S1). The translational diffusion equation is given by, $\left\langle\left(\Delta r_{i}\right)^{2}\right\rangle=2 D_{i} \tau$ where D_{i} is the diffusion coefficient, $i=\|$ or \perp to the director, r_{i} can be x or y . The difference in values of $\left\langle(\Delta x)^{2}\right\rangle$ and $\left\langle(\Delta y)^{2}\right\rangle$ is due to the anisotropy in motion of the particle (Fig. S1). Then the diffusion coefficients, $D_{\|}$and D_{\perp} are obtained from the slopes of linear fits of $\left\langle(\Delta x)^{2}\right\rangle$ and $\left\langle(\Delta y)^{2}\right\rangle$ as a function of τ and the corresponding drag coefficients, $\zeta_{\|}$and ζ_{\perp} (Table S1). are obtained using the relation $\zeta_{i}=\frac{k_{B} T}{D_{i}}$ where T is the room temperature at which experiment is carried out.

Figure S1: The position coordinates x and y of an elastic dipole and quadrupole. Mean square displacements along x - and y-axes in a planar cell as a function of τ for a (a) dipole and (b) quadrupole. POM images of both dipole and quadrupole are shown with director \hat{n} along the x-axis. Diffusion coefficients and drag coefficients are given in Table S1.

	$D_{\\|}\left(10^{-2} \mu \mathrm{~m}^{2} / \mathrm{s}\right)$	$D_{\perp}\left(10^{-2} \mu \mathrm{~m}^{2} / \mathrm{s}\right)$	$\zeta_{\\|}\left(10^{-6} \mathrm{~kg} / \mathrm{s}\right)$	$\zeta_{\perp}\left(10^{-6} \mathrm{~kg} / \mathrm{s}\right)$
Dipole	0.67 ± 0.1	0.49 ± 0.1	0.61 ± 0.1	0.84 ± 0.1
Quadrupole	0.71 ± 0.1	0.29 ± 0.1	0.58 ± 0.1	1.39 ± 0.1

Table S1: Diffusion coefficients ($D_{\|}$and D_{\perp}) and drag coefficients ($\zeta_{\|}$and ζ_{\perp}) for dipoles and quadrupoles along parallel and perpendicular to the director.

2. Interaction energy of dipole and quadrupole pairs in ZLI-2293 NLC.

The particles experience long-range elastic interactions. Here elastic force $\left(F_{e l}\right)$ is balanced by the viscous drag force, $F_{d r a g}=-\zeta \frac{d R(t)}{d t}$ in a nematic medium where ζ is the drag coefficient, $R(t)$ is the interparticle separation and the equation of motion is given by, $F_{e l}+$ $F_{d r a g}=0$. Elastic forces are given by $F_{e l}^{\text {dipole }}=-\frac{k}{R^{4}}$ and $F_{e l}^{q u a d r u p o l e}=-\frac{k}{R^{6}}$ for dipoles and quadrupoles respectively. From these relations, we will get the interparticle separation, $R(t)=$ $\left(R_{0}{ }^{5}-5 \alpha t\right)^{\frac{1}{5}}$ and $R(t)=\left(R_{0}{ }^{7}-7 \alpha t\right)^{\frac{1}{7}}$ for dipoles and quadrupoles, respectively, where $\alpha=$ $\frac{\mathrm{k}}{\mathrm{K}}$. The elastic interaction potential energy is given by, $W=\int F_{\text {drag }} \cdot d R$. The interactions of two colinear particles are attractive with minimum $W \approx-3400 k_{B} T$ and $\approx-120 k_{B} T$ for dipoles and quadrupoles, respectively (See Fig. S2).

Figure S2: Variation of interparticle separation (R) with time (t) for (a) dipoles and (b) quadrupoles. The red curves show the nonlinear least square fit with the equations $R(t)=$ $\left(R_{0}{ }^{5}-5 \alpha t\right)^{\frac{1}{5}}$ and $R(t)=\left(R_{0}{ }^{7}-7 \alpha t\right)^{\frac{1}{7}}$ for dipoles and quadrupoles, respectively. R_{0} is the separation at time $t=0$ and α is obtained as $(2.61 \pm 0.01) \times 10^{4} \mu \mathrm{~m}^{5} / \mathrm{s}$ and $(3.47 \pm 0.13) \times 10^{4}$ $\mu \mathrm{m}^{7} / \mathrm{s}$ for dipoles and quadrupoles, respectively. The inset shows the interaction potential energy (W) in units of $k_{B} T$ as a function of separation (R).

3. Dipolar assembly of match-stick shaped particles in NLC

Figure S3: (a) POM and (b) full wave plate images of dipolar chains of matchstick-shaped particles. Double headed arrow shows the alignment direction of the director \mathbf{n}.
4. Motion of matchstick particles under in-plane transverse DC electric and magnetic fields in ZLI - 2293 NLC.

Figure S4: Variation in relative (a) x - and (b) y-coordinates with time for different values of B for the particles under in-plane DC electric field $\left(7.5 \times 10^{3} \mathrm{~V} / \mathrm{m}\right)$.

5. Motion of matchstick particles under in-plane transverse DC electric and magnetic

 fields in ZLI - $\mathbf{2 2 9 3}$ NLC when the polarity of E is reversed.

Figure S5: (a) Schematic of a planar cell with electric field $\mathbf{E}(7.5 \mathrm{mV} / \mu \mathrm{m})$ between in-plane electrodes and magnetic field B(800G) applied perpendicular to \mathbf{E}. The director distortion and initial orientation of the matchstick is as shown. (b,c) Variation of x - and y-coordinates of the particle with time for different values of B. (d) Color coded trajectories depicting the motion of the particle when $B=0$, and $B=800 G\left(\phi= \pm 90^{\circ}\right) ; t_{\min }=0 \mathrm{~s}$ and $t_{\max }=30 \mathrm{~s}$ (see Movie S2). The angle subtended by \mathbf{B} with the director is denoted by ϕ. The trajectory angles with respect to the director are mentioned in each case. Double-headed arrow denotes the director. The specified angles are accurate within $\pm 1.5^{\circ}$.
6. Variation of particle velocity with electric field and frequency in NLC (XV7039-200).

Figure S6: (a) Electric field dependent velocity (v_{x}) at a fixed frequency 30 Hz for E above a threshold. Red line shows the linear least square fit to $v_{x}=\beta E^{2}$ with slope $\beta=(81.7 \pm 1.9)$ $\mu \mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{~V}^{-2}$. (b) Variation of particle velocity with frequency at a fixed electric field ($0.38 \mathrm{~V} / \mu \mathrm{m}$). The red curve is a guide to the eye.
7. Motion of matchstick particles under out of plane transverse AC electric and magnetic fields in XV7039-200 NLC.

Figure S7: Variation in relative (a) x - and (b) y-coordinates with time for different values of B for the particles under out of plane $A C$ electric field $\mathbf{E}(0.38 \mathrm{~V} / \mu \mathrm{m}, 30 \mathrm{~Hz})$.

8. Movies

Movie S1: Movie of a matchstick particle in ZLI-2293 with dipolar distortion moving under in-plane transverse DC electric and magnetic fields as shown in Fig.5a. The particle always moves towards the positive electrode. The value of the DC electric field, $\mathbf{E}(=7.5 \mathrm{mV} / \mu \mathrm{m}$, and the magnetic field, $\mathbf{B}=800 \mathrm{G}$. The angle subtended by \mathbf{B} with the director is denoted by ϕ. (a) When $\phi=90^{\circ}$, the trajectory makes an angle $\approx 7^{0}$ with the director; the x-component of velocity $v_{x}=-1.5 \mu \mathrm{~m} / \mathrm{s}$, and the y-component of velocity $v_{y}=0.2 \mu \mathrm{~m} / \mathrm{s}$. (b) When $\mathrm{B}=0$, the trajectory makes an angle $\approx 4^{0}$ with the director; $v_{x}=-1.5 \mu \mathrm{~m} / \mathrm{s}$, and $v_{y}=0.1 \mu \mathrm{~m} / \mathrm{s}$. (c) When ϕ $=-90^{0}$, the trajectory makes an angle $\approx-1^{0}$ with the director; $v_{x}=-1.5 \mu \mathrm{~m} / \mathrm{s}$ and $v_{y}=-0.01 \mu \mathrm{~m} / \mathrm{s}$. The specified angles are accurate within $\pm 1.5^{0}$.

Movie S2: Movie of a matchstick particle in ZLI-2293 with dipolar distortion near the head of the matchstick moving under in-plane transverse DC electric and magnetic fields as shown in Fig. S4(a). The particle always moves towards the positive electrode. The value of the DC electric field, $\mathbf{E}=7.5 \mathrm{mV} / \mu \mathrm{m}$, and the magnetic field, $\mathbf{B}=800 \mathrm{G}$. The angle subtended by \mathbf{B} with the director is denoted by ϕ. (a) When $\phi=-90^{\circ}$, the trajectory makes an angle $\approx 3^{0}$ with the director; the x-component of velocity $v_{x}=1.6 \mu \mathrm{~m} / \mathrm{s}$, and the y-component of velocity $v_{y}=$ $0.1 \mu \mathrm{~m} / \mathrm{s}$. (b) When $\mathrm{B}=0$, the trajectory makes an angle $\approx-3^{0}$ with the director; $v_{x}=1.6 \mu \mathrm{~m} / \mathrm{s}$, and $v_{y}=-0.1 \mu \mathrm{~m} / \mathrm{s}$. (c) When $\phi=90^{\circ}$, the trajectory makes an angle $\approx-7^{0}$ with the director; v_{x} $=1.6 \mu \mathrm{~m} / \mathrm{s}$ and $v_{y}=-0.2 \mu \mathrm{~m} / \mathrm{s}$. The specified angles are accurate within $\pm 1.5^{\circ}$.

Movie S3: Microscopic video recording of a matchstick particle in XV7039-200 with dipolar distortion near the head of the matchstick moving under out-of-plane AC electric field, \mathbf{E} (0.38 $\mathrm{V} / \mu \mathrm{m}, 30 \mathrm{~Hz}$) and an in-plane orthogonal magnetic field, $\mathbf{B}=800 \mathrm{G}$. The angle subtended by \mathbf{B} with the director is denoted by ϕ. Due to the AC electric field $E \hat{\mathbf{z}}$, the particle tilts in the zdirection and moves in the $x y$-plane. (a) When $\phi=90^{\circ}$, the particle trajectory makes an angle $\approx-25^{0}$ with the director. The x-component of velocity $v_{x}=2.8 \mu \mathrm{~m} / \mathrm{s}$, and y-component of velocity $v_{y}=-1.3 \mu \mathrm{~m} / \mathrm{s}$. (b) When $\mathrm{B}=0$, the trajectory makes an angle $\approx 10^{\circ}$ with the director; $v_{x}=-2.8 \mu \mathrm{~m} / \mathrm{s}$, and $v_{y}=0.5 \mu \mathrm{~m} / \mathrm{s}$. (c) When $\phi=-90^{\circ}$, the trajectory makes an angle $\approx 37^{\circ}$ with the director; $v_{x}=-2.9 \mu \mathrm{~m} / \mathrm{s}$, and $v_{y}=1.7 \mu \mathrm{~m} / \mathrm{s}$. The specified angles are accurate within $\pm 1.5^{0}$.

