Supplementary Information for

Electrophoretic propulsion of matchstick-shaped magnetodielectric particles in the presence of external magnetic fields in a nematic liquid crystal

Archana S¹, Devika V S¹, Prasanna More², Ravi Kumar Pujala² and Surajit Dhara^{1*}

¹School of Physics, University of Hyderabad, Hyderabad-500046, India

²Soft and Active Matter Group, Department of Physics, Indian Institute of Science Education and Research (IISER), Tirupati, Andhra Pradesh-517507, India

*To whom correspondence should be addressed: surajit@uohyd.ac.in

This pdf file includes the description of the following:

Figure S1- S7

Table S1

Movie S1-S3

1. Brownian motion of dipoles and quadrupoles in ZLI-2293 NLC

Isolated elastic dipoles and quadrupoles in a planar cell are video recorded and the particle trajectories are obtained using a suitable particle tracking software. The mean square displacement (MSD) is calculated from the *x*- and *y*-position coordinates which vary linearly with time delay τ (Fig. S1). The translational diffusion equation is given by, $\langle (\Delta r_i)^2 \rangle = 2D_i \tau$ where D_i is the diffusion coefficient, $i = || \text{ or } \bot$ to the director, r_i can be x or y. The difference in values of $\langle (\Delta x)^2 \rangle$ and $\langle (\Delta y)^2 \rangle$ is due to the anisotropy in motion of the particle (Fig. S1). Then the diffusion coefficients, D_{\parallel} and D_{\perp} are obtained from the slopes of linear fits of $\langle (\Delta x)^2 \rangle$ and $\langle (\Delta y)^2 \rangle$ as a function of τ and the corresponding drag coefficients, ζ_{\parallel} and ζ_{\perp} (Table S1). are obtained using the relation $\zeta_i = \frac{k_B T}{D_i}$ where T is the room temperature at which experiment is carried out.

Figure S1: The position coordinates *x* and *y* of an elastic dipole and quadrupole. Mean square displacements along x- and y-axes in a planar cell as a function of τ for a (a) dipole and (b) quadrupole. POM images of both dipole and quadrupole are shown with director \hat{n} along the *x*-axis. Diffusion coefficients and drag coefficients are given in Table S1.

	$D_{\parallel}(10^{-2}\mu m^{2/s})$	$D_{\perp} (10^{-2} \mu m^2/s)$	$\zeta_{\parallel} (10^{-6} \text{kg/s})$	$\zeta_{\perp}(10^{-6}$ kg/s)
Dipole	0.67 ± 0.1	0.49 <u>+</u> 0.1	0.61 ± 0.1	0.84 ± 0.1
Quadrupole	0.71 ± 0.1	0.29 ± 0.1	0.58 ± 0.1	1.39 ± 0.1

Table S1: Diffusion coefficients (D_{\parallel} and D_{\perp}) and drag coefficients (ζ_{\parallel} and ζ_{\perp}) for dipoles and quadrupoles along parallel and perpendicular to the director.

2. Interaction energy of dipole and quadrupole pairs in ZLI-2293 NLC.

The particles experience long-range elastic interactions. Here elastic force (F_{el}) is balanced by the viscous drag force, $F_{drag} = -\zeta \frac{dR(t)}{dt}$ in a nematic medium where ζ is the drag coefficient, R(t) is the interparticle separation and the equation of motion is given by, $F_{el} + F_{drag} = 0$. Elastic forces are given by $F_{el}^{dipole} = -\frac{k}{R^4}$ and $F_{el}^{quadrupole} = -\frac{k}{R^6}$ for dipoles and quadrupoles respectively. From these relations, we will get the interparticle separation, $R(t) = (R_0^5 - 5\alpha t)^{\frac{1}{5}}$ and $R(t) = (R_0^7 - 7\alpha t)^{\frac{1}{7}}$ for dipoles and quadrupoles, respectively, where $\alpha = \frac{k}{\zeta}$. The elastic interaction potential energy is given by, $W = \int F_{drag} \cdot dR$. The interactions of two colinear particles are attractive with minimum $W \approx -3400 \ k_BT$ and $\approx -120 \ k_BT$ for dipoles and quadrupoles, respectively (See Fig. S2).

Figure S2: Variation of interparticle separation (*R*) with time (*t*) for (a) dipoles and (b) quadrupoles. The red curves show the nonlinear least square fit with the equations $R(t) = (R_0^5 - 5\alpha t)^{\frac{1}{5}}$ and $R(t) = (R_0^7 - 7\alpha t)^{\frac{1}{7}}$ for dipoles and quadrupoles, respectively. R_0 is the separation at time t = 0 and α is obtained as $(2.61\pm0.01) \times 10^4 \,\mu\text{m}^5$ /s and $(3.47\pm0.13) \times 10^4 \,\mu\text{m}^7$ /s for dipoles and quadrupoles, respectively. The inset shows the interaction potential energy (*W*) in units of $k_B T$ as a function of separation (*R*).

3. Dipolar assembly of match-stick shaped particles in NLC

Figure S3: (a) POM and (b) full wave plate images of dipolar chains of matchstick-shaped particles. Double headed arrow shows the alignment direction of the director **n**.

4. Motion of matchstick particles under in-plane transverse DC electric and magnetic fields in ZLI – 2293 NLC.

Figure S4: Variation in relative (a) x- and (b) y- coordinates with time for different values of **B** for the particles under in-plane DC electric field $(7.5 \times 10^3 \text{V/m})$.

5. Motion of matchstick particles under in-plane transverse DC electric and magnetic fields in ZLI – 2293 NLC when the polarity of E is reversed.

Figure S5: (a) Schematic of a planar cell with electric field **E** (7.5 mV/µm) between in-plane electrodes and magnetic field **B** (800G) applied perpendicular to **E**. The director distortion and initial orientation of the matchstick is as shown. (b,c) Variation of *x*- and *y*- coordinates of the particle with time for different values of **B**. (d) Color coded trajectories depicting the motion of the particle when B = 0, and B = 800G ($\phi = \pm 90^{0}$); $t_{min} = 0$ s and $t_{max} = 30$ s (see Movie S2). The angle subtended by **B** with the director is denoted by ϕ . The trajectory angles with respect to the director are mentioned in each case. Double-headed arrow denotes the director. The specified angles are accurate within $\pm 1.5^{0}$.

6. Variation of particle velocity with electric field and frequency in NLC (XV7039-200).

Figure S6: (a) Electric field dependent velocity (v_x) at a fixed frequency 30 Hz for E above a threshold. Red line shows the linear least square fit to $v_x = \beta E^2$ with slope $\beta = (81.7 \pm 1.9) \mu m^3 s^{-1} V^{-2}$. (b) Variation of particle velocity with frequency at a fixed electric field (0.38 V/µm). The red curve is a guide to the eye.

25 **(a)** (b) 12 $B = 800 G (\phi = 90^{\circ})$ $B = 800 G (\phi = 90^{\circ})$ 20 $\mathbf{B} = \mathbf{0}$ $\mathbf{B} = \mathbf{0}$ 15 8 **B =800 G (\phi = -90°)** $B = 800 G (\phi = -90^{\circ})$ 10 5 (mщ) (mm) ×-5 > -10 -8 -15 -20 -12 -25 2 t (s) 0 t⁴(s) 0 3 5 6 8 2 3 5 8

7. Motion of matchstick particles under out of plane transverse AC electric and magnetic fields in XV7039-200 NLC.

Figure S7: Variation in relative (a) x- and (b) y- coordinates with time for different values of **B** for the particles under out of plane AC electric field $E(0.38 \text{ V/}\mu\text{m}, 30 \text{ Hz})$.

8. Movies

Movie S1: Movie of a matchstick particle in ZLI-2293 with dipolar distortion moving under in-plane transverse DC electric and magnetic fields as shown in Fig.5a. The particle always moves towards the positive electrode. The value of the DC electric field, **E** (= 7.5 mV/µm, and the magnetic field, **B** = 800 G. The angle subtended by **B** with the director is denoted by ϕ . (a) When $\phi = 90^{\circ}$, the trajectory makes an angle $\approx 7^{\circ}$ with the director; the *x*- component of velocity $v_x = -1.5 \mu$ m/s, and the *y*- component of velocity $v_y = 0.2 \mu$ m/s. (b) When B = 0, the trajectory makes an angle $\approx 4^{\circ}$ with the director; $v_x = -1.5 \mu$ m/s, and $v_y = 0.1 \mu$ m/s. (c) When ϕ = -90°, the trajectory makes an angle $\approx -1^{\circ}$ with the director; $v_x = -1.5 \mu$ m/s and $v_y = -0.01 \mu$ m/s. The specified angles are accurate within $\pm 1.5^{\circ}$.

Movie S2: Movie of a matchstick particle in ZLI-2293 with dipolar distortion near the head of the matchstick moving under in-plane transverse DC electric and magnetic fields as shown in Fig. S4(a). The particle always moves towards the positive electrode. The value of the DC electric field, $\mathbf{E} = 7.5 \text{ mV/}\mu\text{m}$, and the magnetic field, $\mathbf{B} = 800 \text{ G}$. The angle subtended by **B** with the director is denoted by ϕ . (a) When $\phi = -90^{0}$, the trajectory makes an angle $\approx 3^{0}$ with the director; the *x*- component of velocity $v_{x} = 1.6 \mu\text{m/s}$, and the *y*- component of velocity $v_{y} = 0.1 \mu\text{m/s}$. (b) When $\mathbf{B} = 0$, the trajectory makes an angle $\approx -3^{0}$ with the director; $v_{x} = 1.6 \mu\text{m/s}$, and $v_{y} = -0.1 \mu\text{m/s}$. (c) When $\phi = 90^{0}$, the trajectory makes an angle $\approx -7^{0}$ with the director; $v_{x} = 1.6 \mu\text{m/s}$.

Movie S3: Microscopic video recording of a matchstick particle in XV7039-200 with dipolar distortion near the head of the matchstick moving under out-of-plane AC electric field, **E** (0.38 V/µm, 30 Hz) and an in-plane orthogonal magnetic field, **B** = 800 G. The angle subtended by **B** with the director is denoted by ϕ . Due to the AC electric field $E\hat{z}$, the particle tilts in the z-direction and moves in the *xy*- plane. (a) When $\phi = 90^{0}$, the particle trajectory makes an angle $\approx -25^{0}$ with the director. The *x*- component of velocity $v_{x} = 2.8 \ \mu\text{m/s}$, and *y*- component of velocity $v_{y} = -1.3 \ \mu\text{m/s}$. (b) When B = 0, the trajectory makes an angle $\approx 10^{0}$ with the director; $v_{x} = -2.8 \ \mu\text{m/s}$, and $v_{y} = 0.5 \ \mu\text{m/s}$. (c) When $\phi = -90^{0}$, the trajectory makes an angle $\approx 37^{0}$ with the director; $v_{x} = -2.9 \ \mu\text{m/s}$, and $v_{y} = 1.7 \ \mu\text{m/s}$. The specified angles are accurate within $\pm 1.5^{0}$.