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Fig. S1. Schematic showing two solids first out of contact, and later in contact. When contact is

formed, surface area of solid 1 and solid 2 is replaced by a solid 1/solid 2 interface.

I. KUTTSUKIGAMI

We honour the Asian cultures from which origami was originally perfected as an art-

form, by using the Japanese language to name the technique of “Sticky Origami” discussed

in this work. Origami itself is a word formed from combination of “ori” or folding with

“kami” or paper. Similarly, Kirigami, which uses cuts to create structure and function, is a

word combining “kiri” or cut with “kami”. Following the pattern, one naturally arrives at

Kuttsukigami by combining “Kuttsuku” or stick together, with “kami”.

II. ADHESION BASICS

For the convenience of those not intimately familiar with the science of adhesion, we

present a short discussion of the important general concepts. Figure S1 shows a schematic

of an adhesive process. Before separation, two materials 1 and 2 form an interface 12 along

which a crack might propagate and eventually separate the two materials. If separated, the
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materials 1 and 2 must create new interface of the same total area (A) of the former 12

interface. An energy is associated with each interface, Ui, which is proportional to the total

contact area, e.g. Ui = γiA, where γi is a proportionality constant associated with interface

i. Quite commonly γi is referred to as a surface energy.

The question of adhesion is then most simply defined by comparison of the energies in

the two different states. For example,

∆Uinterface = γ2A+ γ1A− γ12A = wA, (S1)

defines the difference in energy between the separated and contacting states. w = γ1+γ2−γ12

defines the Young-Dupré work of adhesion. If ∆U is less than zero (w < 0) free energy is

lower when the solids are in contact. This is a simple way to define adhesion: w relates to

how strongly the two solids are ‘bonded’ to one another.

Unfortunately most materials, especially soft materials like the elastomers and gels dis-

cussed in the main manuscript, have additional losses associated with the motion of the crack

which must propagate along the 12 interface in order to separate the two materials. From

this point of view, adhesion is best determined by examining the process of the propagation

of the interfacial crack. In this case, the total energy must consider the mechanical energy

applied to the system as well as the interfacial energy itself: Utotal = Umechanical + Uinterface.

We can then consider how the motion of a small “virtual” crack which would create some

small amount of interface, ∂A, changes the overall energy. In particular,

∂Utotal = (G− w)∂A, (S2)

where we have defined the systems energy release rate by G ≡ ∂Umechanical/∂A. If G < w the

system reduces energy by closing the virtual crack and if G > w opening the crack decreases

free energy. G represents the measured part of the system and so includes any losses which

occur during crack propagation [1].

An adhesion experiment typically involves an instrument which measures forces and dis-

placements as stress is increased along the interface. Often experiments report a critical

force, Fc, measured at the point where the interface completely separates. Note that defin-

ing the critical point requires a stability analysis of the free energy because a crack will open

for a range of G values. It is not enough for G ≥ w, but in fact the system must also have

∂G/∂A ≤ 0 for the crack to drive through the interface. The critical energy release rate
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(defining the critical force through Umechanical) occurs at the last point of stability. In other

words, Gc occurs uniquely at the point where ∂G/∂A = 0.

III. SOME ADDITIONAL EXAMPLES OF KUTTSUKIGAMI DESIGN

Fig. S2. Photograph of several kuttsukigami designs.
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IV. ADHESION OF A RACQUET
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Fig. S3. Schematic racquet shape bend defining several quantities discussed in the supplementary

text.

Here we describe the racquet shape following the formalism of Glassmaker and Hui in

[2]. Given a sheet of length L bent in a racquet like shape as shown in fig. S3, moments and

tensions must be balanced in order for the structure to remain in equilibrium. The moment

of the sheet at any point can be given by Bdθ(s)/ds, where θ(s) is the angle the sheet makes

with the horizontal at any point, s, along its length. B is the bending modulus. Explicitly,

the equilibrium is given by,

M −M0 − T0y − V0x = 0. (S3)

where the 0 subscript indicates values of moment, tension and shear at the end of the plate.

Differentiating Eqn. S3 while noting that dx/ds = cos θ and dy/ds = sin θ, yields:

B
d2θ

ds2
− T0 sin θ − V0 cos θ = 0. (S4)

Adhesion with of the strip with itself or a substrate enters through the adhesive boundary

conditions (e.g. θ′(L) =
√
2Gc/B =

√
2ℓea ). Again we follow Hui and denote the second

adhesive boundary as a proportionality to the first (θ′(L) =
√
2µℓea, where µ is the ratio of
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critical energy release rate of the substrate/film interface to that of the film/self interface).

Coupled with the more obvious boundary conditions (x(0) = 0, y(0) = 0, θ(0) = 0, y(L) = 0

and θ(L) = −π) one arrives at the elastica:

d2θ

ds2
− 1

2ℓ2ea
(1− µ) sin θ − V0

B
cos θ = 0. (S5)

Equation S5 can be solved numerically and fit to measured racquet contours to identify

precise values of the adhesive parameters in an experiment. Glassmaker also noted the

usefulness of identifying how the structure depends on the intrinsic length ℓea and how this

length relates to more simply measured quantities such as the racquet width. In particular,

W = η(µ)ℓea where η is a numerically determined function of µ and is of order 1 when the

film/substrate adhesion is low (as in our experiments).

V. CYLINDRICAL CLOSURE

We note that a detailed treatment of an adhesive loop would use boundary conditions at

the point of overlap to derive an elastica-like equation for the position of the sheet. This

is necessary because there are no forces holding the sheet in a circular shape, as would be

the case of a film rolled tightly upon itself (an Archimedean spiral). This said, a simple

argument for the necessary conditions for a crack to propagate along the overlap region can

be made if the loop is assumed to be sufficiently large, and the overlap sufficiently small, such

that the loop can be approximated as a cylinder. At the crack tip, an incremental length

of the crack dℓoverlap might open, freeing only the local bending energy in the opened part

of the crack ∼ BL
2R2dℓoverlap and reducing the adhesion by GcLdℓoverlap. This local balance

would conclude with the prediction that the closure would be spontaneously unstable for:

R <
√

B/2Gc (S6)

VI. ADHESION OF A MÖBIUS STRIP

A Möbius strip is also easily constructed by adhering a small portion of a twisted strip to

itself, forming another adheso-elastic problem. In this case a simple argument for crack prop-

agation is not so clear due to the addition of tortion to the bending energy. We can, however,

6



take a step in the right direction with a broad argument: energy stored mechanically in the

structure must be less than the energy stord by adhesion for the loop to remain stable. The

elastic energy stored in a developable Möbius strip is not easily determined, though recent

calculations show promising results [3, 4]. For this work we are interested in the mechanical

energy stored in the structure, which both works find to scale as Utot ∼ (w/L)B, where B is

the bending modulus of the strip, L is its length, and w is its width. The structure is fab-

ricated by overlapping a small length, Loverlap, and we assume this small double thickness

region does not appreciably alter the bending energy of the structure (foci will naturally

avoid this region). The adhesion energy required to hold the structure closed is given by

Ua = γwLoverlap. Equating the mechanical and adhesion energies then allows the scaling of

the minimum overlap length to be estimated:

Loverlap ∼ B/γL. (S7)

We note that this total energy comparison will only yield a broad boundary for what struc-

tures are physically impossible. This broad veiwpoint can be corrected by a more detailed

approach that considers the energy released in each step of infinitesimal crack propagation.

The argument used for the cylinder and spiral is not directly applicable here because the

curvature at the point of film overlap is not easily related to the overall size of the loop.

Further, the more difficult to estimate release of tortion will also contribute to the detailed

balance at the crack tip. We leave this detailed calculation for a future work.

VII. CLOSURE OF A RACQUET

To form the simplest type of packet, a sheet can be first formed into a racquet shape and

then can be closed by squeezing the open end together. As the racquet shape is minimal,

additional energy storage is needed to maintain this new, closed, geometry. Note that the

closure will change the Gaussian curvature from zero to non-zero which means in-plane

stretching has been created. The basic geometry is sketched in figure 4, which we note is

very similar to the geometry of the ridge formed between two d-cones [5].

The basic geometry allows us to make a scaling estimate of the length of sheet distorted

by the racquet closure, x0 in fig. S4. The strain created along the apex of the racquet can

be estimated by comparing the length of the hypotenuse of a triangle with sides x0 and δ
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Fig. S4. The geometry of a racquet closure. The racquet is shown with an imaginary cut for clarity.

The high adhesion zone forces the sheet to come into complete contact, which creates stretching in

the sheet over a distance of x0. The area below the dashed line is in contact and could therefore

be influenced by sheet-sheet adhesion.

to the unstretched length x0. In this case the strain scales as ϵ ∼ δ2/x2
0 when assuming

δ ≪ x0. The strain energy is given by Us ∼ (Et/2)ϵ2A, where A is the area over which

the strain is spread. The strain is localized to the ridge, so A ∼ ℓeax0 as we assume the

width of the racquet to scale as the elasto-adhesive length. δ can also be shown to be related

to the racquet width under the assumption that there is no stretching orthogonally to the

ridge (e.g. δ = (π/2 − 1)ℓea). Dropping the (π/2 − 1) and other constants for simplicity,

Us ∼ Etℓ5ea/x
3
0.

There is also increased bending caused by the closure, which will scale as UB ∼

(Et3/2)(κ2)A, where κ is the curvature along the ridge. Assuming the curvature is dominated

by the sharp curvature where the packet is held closed, κ ∼ 1/t and we find UB ∼ Bx0ℓea/t
2.

Some new contact is made when the packet is closed, meaning the adhesion energy has also

changed (Uadh −Gcx0ℓea) and should also influence the problems lengthscale.

Minimizing the total energy determines the unknown length,
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x0 ∼
(

3Etℓ4ea
B/t2 −Gc

)1/4

. (S8)

As adhesion becomes small with respect to Et, the result can be simplified

x0 ∼ ℓea. (S9)

VIII. USER EXPERIENCE WITH ENCAPSULATED FOODS

The main text refers to several packaged food types which demonstrate kuttsukigami

principles. In this section we detail the construction of edible gel packets and pasta and

the response of a panel of 3 testers to the encapsulated foods. Our basic hypothesis is that

the gelatin packets, constructed to encapsulate chocolate, will open easily and release the

chocolate in response to the moisture of the mouth, whereas the pasta has a higher, non-

responsive inter-sheet adhesion and will only open upon mechanical agitation (chewing).

Tests were conducted with thin gel sheets prepared from “Lime Jell-O” which was used

as received from Horbacher Foods Inc. The gelatin was prepared by adding two 170 g

packets to 0.591 L water at a temperature just below 100 ◦C with constant stirring. After

the powder was completely dissolved in the water, the liquid was cast in various glassware.

Occasionally glassware was lined with waxed paper to facilitate the peeling of thin films.

Once cast, materials were put into a refrigerator and cooled for 24 h.

Once cooled, gelatin sheets were cut into various shapes for encapsulation experiments.

Typically a sheet was cut to approximately 3×6 cm. Semi-sweet chocolate was added to the

center of a sheet, which was then folded by hand around the encapsulate. Sheets which did

not seal were not used, however, films of approximately 1 mm in thickness typically sealed

completely. The packets were then given to the test panel who’s comments were recorded.

Highlights of the panel responses are given below:

Interviewer: “Describe how it was to eat.”

Tester #1: “Chocolate and jell-o does not taste good together”

Interviewer: “Did you first taste Jell-o?”

Tester #1: “Yes”

Interviewer: “Was the change in texture a surprise?”
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Tester #1: “uh huh”

Interviewer: “Describe how it was to eat.”

Tester #2: “That doesn’t taste that bad.”

Interviewer: “What flavours did you taste, and when?”

Tester #2: “The Jell-o came first, then the chocolate chips. Then a little more Jell-o after

that.”

Interviewer: “Describe how it was to eat.”

Tester #3: “I think that it started out kind of sweet and then once I got into the chocolate

the flavour changed because I was biting into the chocolate.”

While the pandemic limited our ability to form a larger unbiased test panel, we feel that

this preliminary study is reasonable verification of the basic stimuli responsiveness of this

food based encapsulation system.

Additional tests were conducted with “Buitoni four cheese ravioli” which used as received

from Hornbacher Foods Inc. The ravioli was prepared for consumption in boiling water for

5-10 minutes before being drained and allowed to cool.

Test panel response for the four cheese ravioli:

Tester #1: “I like this”

Tester #2: “This is ok, I guess”

Tester #3: “This isn’t the same as spaghetti”

Upon additional probing from the interviewer, test subjects agreed that the flavour changed

as the cheese was released from the noodle via chewing, verifying again the basic concept of

food based encapsulation.

IX. CREASED VS RACQUET BENDS

To illustrate the value of racquet bends with respect to value added layers we created

simple thin circuits by depositing copper traces on polyimide sheets. The sheets were 0.05
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Fig. S5. Number of repeated bends until circuit failure for large or small radius racquet bends,

creases with the wire on the outside or inside of the crease, creasing that alternated the side on

which the wire was printed. Insets show creased and racquet bent circuits.

mm thick and were cut into strips 50 mm long. The trace was approximately with a 0.04

mm thick and 1 mm wide. Resistance could then be monitored as current is passed from

one side of the sheet to the other. We then created a racquet loop or a fold orthogonally to

the trace (insets in Fig. S5). In the bent or folded state resistance was measured, then the

sheet was flattened. This process was repeated until resistivity was noted to be infinite.

Folding with the trace on the outside surface performed slightly better than folding with

the trace on the inside of the circuit. Alternating folding (first inside, then outside) barely

survived a few cycles. On the other hand both large (9.6 mm) and small (2.7 mm) radius

racquet bends lasted 500 cycles without significant changes in resistivity.
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X. RECONFIGURABLE, FOLDABLE LOGIC THROUGH KUTTSUKIGAMI

Fig. S6. Images of the reconfigurable circuit with electronic circuit layout and truth tables.

Folds in the images show the physical step and dashed arrows in layouts indicate the electronic

connections made for a. NAND gate b. AND gate, and c. OR gate. d. Implementation of binary

half-adder circuit using four individual reconfigurable circuits – the LEDs at the bottom left and

the bottom right circuits indicate the sum and carry outputs for the half-adder for different input

A,B combinations. e. Electronic circuit equivalent of the half-adder. f. Half-adder truth table.

Green and red arrows indicate inputs and outputs respectively.
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(1993).

[4] E. Starostin and G. van der Heijden, The shape of a möbius strip, Nature Mater. 6, 563 (2007).
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