## **Supplementary information**

## Shape Memory Hydrogel with Remodelable Permanent Shapes and Programmable Cold-Induced Shape Recovery Behavior

Xinjun Wu<sup>1</sup>, Xin Guan<sup>1</sup>, Shushu Chen<sup>1</sup>, Jiangpeng Jia<sup>1</sup>, Chongyi Chen<sup>1</sup>, Jiawei Zhang<sup>2,\*</sup> and Chuanzhuang Zhao<sup>1,\*</sup>

<sup>a</sup>Mr. X. Wu, Ms. X. Guan, Ms. S. Chen, Mr. J. Jia, Prof. Dr. C. Chen, Prof. Dr. C. Zhao, School of Materials Science & Chemical Engineering, Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China,

\*Corresponding author. E-mail: zhaochuanzhuang@nbu.edu.cn

<sup>b</sup>Prof. Dr. J. Zhang, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China,

\*Corresponding author. E-mail: zhangjiawei@tiangong.edu.cn



Fig. S1. FTIR spectrum of DETA.



**Fig. S2.** Mass change curve of PAA/DETA hydrogels during immersing in calcium acetate solution over 72 h. Calcium acetate solutions (0.25 M, 0.5 M, 0.75 M,1 M) were used.



Fig. S3. TGA thermograms of 2CH-gel with 0.42 M of DETA and with different  $Ca(Ac)_2$  concentration.



**Fig. S4.** Comparison of mechanical properties of 2CH-gel. (A) Comparison of fracture energy and modulus of PAA/DETA at different DETA concentrations at 20°C. (B) Comparison of fracture energy and modulus of PAA/DETA at different calcium acetate concentrations at 20°C. The concentration of DETA concentration is 0.42 M. (C) Comparison of the modulus of PAA/DETA at 20°C and 70°C with different calcium acetate concentrations. The concentration of DETA is 0.42 M.



**Fig. S5.** Self-healing properties of 2CH-gel. (A) The self-healing efficiency of 2CH-gel with different concentration of DETA and Ca(Ac)<sub>2</sub>. (B) tensile curves of 2CH-gel before and after self-healing.



Fig. S6. Oscillatory amplitude sweep of 2CH-gel with and without Ca(Ac)<sub>2</sub>.



**Fig. S7.** Photos showing the self-healing performance of 2CH-gel. The 2CH-gel is broken into 3 sections by external force, and the 3 sections are placed together in a humid environment and can repair themselves with only 10 seconds of gentle pressure, the middle hydrogel is stained with eosin to make the display effect more obvious. Scale bars = 1.0 cm.



Fig. S8. Loss tangent as function of temperature of 2CH-gel with and without Ca(Ac)<sub>2</sub>.



**Fig. S9.** Angular frequency sweeps of 2CH-gel at different temperatures. (A) Storage modulus and loss modulus of  $X_{0.42}$ -Ca<sub>0</sub> at 20°C. (B) Storage modulus and loss modulus of  $X_{0.42}$ -Ca<sub>0.75</sub> at 20°C. (C) Storage modulus (G') and loss modulus (G'') of  $X_{0.42}$ -Ca<sub>0</sub> at 70°C. (D) Storage modulus and loss modulus of  $X_{0.42}$ -Ca<sub>0.75</sub> at 70°C. All experimental strains were 0.05%.



Fig. S10. Photos showing the thermal stiffening effect of 2CH-gel. A piece of 2CH-gel was heated in hot water at 70°C for 10 s, and then it could support a 100 g weight without deformation. (Sample size:  $\sim$ 20 mm ×60 mm × 1 mm). Scale bars = 1.0 cm.



**Fig. S11.** Stress-strain curves of  $X_{0.42}$ -Ca<sub>0</sub> and  $X_{0.42}$ -Ca<sub>0.75</sub> before and after self-healingat 20 °C and 70 °C.



Fig. S12. (A) Fatigue resistance of X<sub>0.42</sub>-Ca<sub>0.75</sub>. (B) Tear resistance of X<sub>0.42</sub>-Ca<sub>0.75</sub>.



Fig. S13. The influences of the temperature and concentration of  $Ca(Ac)_2$  aqueous solution on the shape fixity ratio of 2CH-gel.



**Fig. S14**. Storage modulus (*G'*) and loss modulus (*G''*) of 2CH-gel as a function of temperature. (A) Storage modulus (*G'*) and loss modulus (*G''*) of  $X_{0.42}$ -Ca<sub>0.75</sub> as a function of temperature. (B) Storage modulus (*G'*) and loss modulus (*G''*) of  $X_{0.42}$ -Ca<sub>0.50</sub> as a function of temperature. (C) Storage modulus (*G'*) and loss modulus (*G''*) of  $X_{0.42}$ -Ca<sub>0.25</sub> as a function of temperature.



Fig. S15. Scanning electron micrographs of X<sub>0.42</sub>-Ca<sub>0.75</sub>, X<sub>0.42</sub>-Ca<sub>0.75</sub> and X<sub>0.42</sub>-Ca<sub>0.75</sub> at 70°C.



**Fig. S16.** Photos showing the shape recovery of  $X_{0.42}$ - $C_{a0.25}$ ,  $X_{0.42}$ - $C_{a0.50}$ , and  $X_{0.42}$ - $C_{a0.75}$  after shape fixation in 70 °C water for 10 s.



**Fig. S17.** 3D message encryption display of 2CH-gel.  $X_{0.42}$ -Ca<sub>0.50</sub> and  $X_{0.42}$ -Ca<sub>0.75</sub> hydrogels are assembled into a star-shape, letters are printed on each corner and the star-shaped hydrogel are fixed into a tetrahedron by heating at 70°C. Each corner has a different opening speed to display information (left), while the star-shaped hydrogel can be re-assembled to display different information (right). Scale bars = 1.0 cm.



**Fig. S18.** Schematic illustration and photos showing the information encryption and decryption of 2CH-gel based on the editable shape memory function.  $X_{0.42}$ -Ca<sub>0.50</sub> and  $X_{0.42}$ -Ca<sub>0.75</sub> hydrogel strips were put together in different sequences, then the hydrogel strip was fixed into specific shapes at 70°C, and the hydrogel could display different messages due to the different softening times of each hydrogel pieces. Scale bars = 1.0 cm.



**Fig. S19.** Weight change before (20°C) and after (70°C) phase separation, sample numbers n = 10.



**Fig. S20.** (A) Alternating strain rheology curves (high strain (250%) and low strain (1.0%)) of 2CH-gel without  $Ca(Ac)_2$  after being remodeled. (B) Temperature scanning rheology curves of 2CH-gel without  $Ca(Ac)_2$  after being remodeled.



**Fig. S21.** (A) Tensile curves of 2CH-gel after remodeling. (B) The Young's modulus, fracture energy, and fracture energy recovery rate of 2CH-gel after remodeling.



**Fig. S22.** Cyclic testing indicates the reversible phase separation behavior exhibited by 2CH-gel after remodeling.



**Fig. S23.** The influences of the temperature and concentration of  $Ca(Ac)_2$  aqueous solution on the shape fixity ratio of 2CH-gel after remodeling.

| Entry | Sample                                | $AAc (mol L^{-1})$ | $DETA (mol L^{-1})$ | $Ca(Ac)_2$<br>(mol L <sup>-1</sup> ) |
|-------|---------------------------------------|--------------------|---------------------|--------------------------------------|
| 1     | $X_0$ -Ca $_0$                        | 3.5                | 0                   | 0                                    |
| 2     | $X_{0.14}$ -Ca $_0$                   | 3.5                | 0.14                | 0                                    |
| 3     | X <sub>0.28</sub> -Ca <sub>0</sub>    | 3.5                | 0.28                | 0                                    |
| 4     | X <sub>0.42</sub> -Ca <sub>0</sub>    | 3.5                | 0.42                | 0                                    |
| 5     | $X_{1.2}$ -Ca <sub>0</sub>            | 3.5                | 1.2                 | 0                                    |
| 6     | X <sub>0.42</sub> -Ca <sub>0.25</sub> | 3.5                | 0.42                | 0.25                                 |
| 7     | X <sub>0.42</sub> -Ca <sub>0.50</sub> | 3.5                | 0.42                | 0.50                                 |
| 8     | X <sub>0.42</sub> -Ca <sub>0.75</sub> | 3.5                | 0.42                | 0.75                                 |
| 9     | $X_{0.42}$ -Ca <sub>1.0</sub>         | 3.5                | 0.42                | 1.0                                  |
| 10    | X <sub>0.14</sub> -Ca <sub>0.75</sub> | 3.5                | 0.14                | 0.75                                 |
| 11    | X <sub>0.28</sub> -Ca <sub>0.75</sub> | 3.5                | 0.28                | 0.75                                 |

 Table S1. Compositions for 2CH-gel in this work.

| V Co                                                      | Original | Remodeled | Recyle         |
|-----------------------------------------------------------|----------|-----------|----------------|
| A0.42-Ca0.75                                              | state    | state     | efficiency (%) |
| Thermal hardening fracture<br>energy (MJ/m <sup>2</sup> ) | 0.220    | 0.0687    | 31.2           |
| Thermal hardening young's modulus (MPa)                   | 130      | 104       | 80.5           |
| Thermal hardening breaking elongation (%)                 | 10.8     | 5.72      | 52.9           |

**Table S2.** Comparison of mechanical properties before and after remodeling of  $X_{0.42}$ -Ca<sub>0.75</sub> at 70 °C.

**Table S3.** Comparison of mechanical properties before and after remodeling of  $X_{0.42}$ -Ca<sub>0.75</sub> at 20 °C.

| X <sub>0.42</sub> -Ca <sub>0.75</sub> | Original state | Remodeled<br>state | Recyle efficiency<br>(%) |
|---------------------------------------|----------------|--------------------|--------------------------|
| Fracture energy (MJ/m <sup>2</sup> )  | 0.913          | 0.567              | 62.1                     |
| Young's modulus<br>(MPa)              | 0.157          | 0.0942             | 59.8                     |
| Breaking elongation<br>(%)            | 792            | 731                | 92.3                     |