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Other Supplementary Material for this manuscript includes the following: 

• Movie S1 (.mp4 format). Formation of white stripe patterns by applying an RF signal of 

15 mW. 

• Movie S2 (.mp4 format). Formation of color stripe patterns by applying an RF signal of 20 

mW. 

• Movie S3 (.mp4 format). The formation of brown stripe patterns by applying an RF signal 

of 30 mW. 

• Movie S4 (.mp4 format). The formation of dynamic behavior of spatially periodic patterns 

by applying an RF signal of 45 mW. 

• Movie S5 (.mp4 format). The formation of a turbulent-like flow behavior by applying an 

RF signal of 95 mW. 

• Movie S6 (.mp4 format). The formation of a turbulent-like flow behavior by applying an 

RF signal of 130 mW. 

• Movie S7 (.mp4 format). The formation of a turbulent-like flow behavior with stripes by 

applying an RF signal of 260 mW. 

• Movie S8 (.mp4 format). The formation of a turbulent-like flow behavior with stripes by 

applying an RF signal of 320 mW. 

• Movie S9 (.mp4 format). Transition to an isotropic phase by applying an RF signal of 400 

mW. 

• Movie S10 (.mp4 format). In the flow with Er = 3, the SSAW with Rs = 0.1*10-12 is 

switched on and then switched off. 

• Movie S11 (.mp4 format). In the flow with Er = 3, the SSAW with Rs = 0.3*10-12 is 

switched on and then switched off. 

• Movie S12 (.mp4 format). In the flow with Er = 6, the SSAW with Rs = 0.1*10-12 is 

switched on and then switched off. 

• Movie S13 (.mp4 format). In the flow with Er = 6, the SSAW with Rs = 0.3*10-12 is 

switched on and then switched off. 

• Movie S14 (.mp4 format). In the flow with Er = 12, the SSAW with Rs = 0.1*10-12 is 

switched on and then switched off. 

• Movie S15 (.mp4 format). In the flow with Er = 12, the SSAW with Rs = 0.3*10-12 is 

switched on and then switched off. 

• Movie S16 (.mp4 format). First, the SSAW with Rs = 11.2*10-12 is switched on without 

pressure-driven flow. Afterward, while maintaining the SSAW constant, a pressure-driven 

flow is applied with Er increasing from 0 to 50. 

 

 

 

  



 

 

 

1. Continuum simulations 

Continuum simulations are based on the Landau-de Gennes (LdG) formalism1, where the free 

energy is a function of the tensorial order parameter Q 

𝐐 = 𝑆(𝐧𝐧 − 𝐈/3)        (1) 

In Eq. (1), S is the maximum eigenvalue of Q and n is the eigenvector associated with S. The total 

free energy of the NLC is defined as 

𝐹 = ∫ (𝑓LdG + 𝑓el + 𝑓A )d𝑉 +  ∫ 𝑓surf d𝑆
𝜕𝑉𝑉

     (2) 

where 𝑓LdG is the short-range free energy, 𝑓el is the long-range elastic energy, 𝑓A is the acoustic 

energy, and 𝑓surf is the surface free energy due to anchoring. 𝑓LdG is given by2 
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where A and U are phenomenological parameters and the scalar order parameter in the bulk (𝑆𝐵𝑢𝑙𝑘) 

is determined by 𝑆𝐵𝑢𝑙𝑘 =
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 . By considering one-constant approximation, elastic 

energy reads3 

𝑓el =
𝐿

2
(𝛁𝐐)2,         (4) 

where L is a single elastic constant. The acoustic energy is considered as follows4 

𝑓A =  (
𝑢2𝜌𝑜𝑘2

𝜈3 ) 𝐼 cos2(2 π x /λx) 𝐤 ∙ 𝐐 ∙ 𝐤,       (5) 

where 𝐤 is the propagation vector, 𝐼 is the acoustic intensity, ν is the kinematic viscosity, 𝑢2 a 

coupling coefficient, and λx is a wavelength of applied acoustic field. The simulations consider 

homeotropic anchoring with the free energy implemented through a Rapini-Papoular expression 

as5 

𝑓surf =
1

2
W𝐻(𝐐 − 𝐐0)2       (6) 

with the surface-preferred tensorial order parameter, 𝐐0 = 𝑆𝐵𝑢𝑙𝑘(𝛎𝛎 − 𝛅/3) and normal surface 

𝝂. The temporal evolution of Q is simulated by a hybrid lattice Boltzmann method that was used 

to simultaneously solve a Beris-Edwards equation and a momentum equation. The Beris-Edwards 

equation is given as6 

 (
∂

∂𝑡
+ 𝐮 ∙ 𝛁 ) 𝐐 − 𝐒 = Γ𝐇        (7) 

with Γ as the rotational diffusion constant. The tensor S is the generalized advection term written 

as 
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where the tensors A and 𝛀 are the symmetric and antisymmetric velocity gradient tensor 𝛁𝐮, 

respectively. The tensor H is the molecular field defined as 
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The nematic momentum equation is7 

𝜌 (
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where 𝚷 is the asymmetric stress tensor known as 
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This hybrid Lattice Boltzmann method uses a D3Q15 grid. The parameters are chosen for an 

approximation of 5CB with the coherence length (𝜉𝑁) as the unit length. Considering one-constant 

approximation, the elastic constant is 𝐿 = 0.1 with the LdG parameters 𝐴 = 0.1 and 𝑈 = 3.0. The 

rotational viscosity constant Γ = 0.133775. The strength of homeotropic anchoring is W𝐻 = 0.1. 

The intensity of the acoustic field is in the range between 0.000 ≤ 𝐼 ≤ 0.020. 

The critical acoustic intensity Icrit is defined as the intensity needed to reorient the director along 

with the acoustic wave in zy plane when the flow is zero (𝐼 = 0.001). At this value, the acoustic 

energy is of the order of the elastic energy of the system 𝑓𝐴 ~ 𝑓𝑒𝑙 so that 

 

𝐼𝑐𝑟𝑖𝑡 ~ −𝐾 (
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)

2

                                                                                            (12) 

 

 The simulations were done in a rectangular box with periodic boundaries condition implemented 

on 𝑥 −axis and the number of simulated nodes in the grid is 𝑁𝑥 = 120, 𝑁𝑦 = 200, and 𝑁𝑧 = 40. 

 

 

 

 

 



 

 

 

 

2. Determination of Streaming Reynolds Number 

 

Following Riley’s8, for a fluid of density ρ and viscosity µ the Navier-Stokes equation for 

incompressible flow may be written as 

 

Where p’ denotes pressure, v’ denotes the velocity, ω’ = ∇ × v’ the vorticity, ν = µ/ρ the 

kinematic viscosity, and F’ a body force per unit mass. For a dimensionless analysis, we take a 

as a characteristic length and F0 a characteristic value of the force. with ζ as the frequency 

associated with the oscillatory flow so that U0 = F0/ζ is a characteristic velocity of this flow. 

Then 

 

From which we obtain the dimensionless equation for vorticity 

 

Were     

From Eq. (3) we can observe that the oscillatory flow is characterized by two dimensionless 

parameters: ε = U0/ζa which is essentially an inverse of the Strouhal number, and R = U0a/ν a 

Reynolds number. No streaming induced by an oscillatory body force will occur if the body force 

is conservative and R >> 1. Eq. 3 can be expressed as 

 
 

Following the work initiated by Rayleigh, oscillatory flow induces streaming flows because of viscous 

attenuation close to a solid boundary, commonly associated with situations for which ka << 1. 

Here, k is the wave number and a the characteristic length. For oscillatory flows at high frequencies, 



 

 

 

it is assumed that ε << 1. The dimensionless number Rs = εR is essentially a Reynolds number based 

on the velocity εU0. Therefore, the magnitude of Rs determines the contribution of the Laplacian 

of the vorticity in these flows. Rs is commonly known as the streaming Reynolds number, which 

is used to study the development of streaming flows using acoustic waves in fluids. It relates the 

forces related to the oscillations and the viscous dissipation forces. 

 

To estimate the streaming Reynolds number from experimental data we then need the values of 

the characteristic length a, the kinematic viscosity of the fluid, and a metric of the characteristic 

velocity of the oscillatory flow. For a square microfluidic channel, the characteristic length of the 

channel is given by 

 

 

Where w is the width of the channel and h is the height of the channel that defines the channel 

cross-section. 

In a system using acoustic waves to generate standing acoustic waves in fluids, the value of 

U0 relates to the amplitude of the pressure waves generated. therefore, for a device that uses 

interdigitated transducers to create surface acoustic waves, U0 depends on the Voltage applied to 

the transducers and therefore on the applied power from the radio frequency source. The task now 

is to connect the applied power and the voltage signal to the velocity of the propagating wave in 

the fluid. Based on the quasi-static method for non-reflective single-electrode transducers9, the 

total wave amplitude that exits the transducer port is defined as 

 

Where it is assumed that all variables have harmonic dependance so that they are proportional to 

exp(jζt). Here V is the applied voltage, M is the total number of electrodes in the transducer, k 

= ζ/γ is the wavenumber with phase velocity γ, and P̂m = 0, 1, 0, 1, 0, 1, ..., is the electrode polarity 

for a single-electrode transducer. E(ζ) here is an element factor, which varies slowly with ζ and 



 

 

 

is often considered to be constant. For a single electrode transducer, the center frequency ζs0 

occurs when the electrode pitch pe equals λ/2, giving ζs0 = πγ/pe. At this frequency, it is 

found that E(ζs0) = 1.694j(∆γ/γ), getting E(ζ) ≈ E(ζs0) for frequencies near to ζs0. Defining an 

array factor as 

 

Gives φs/V = E(ζ)A(ζ). Of note, the transducer response Ht(ζ) is defined by the expression9 

 

So that the potential of the wave generated can be written as 

 

Here, W is the width of the electrode fingers and ε∞ is defined as the capacitance of a unit-aperture single 

electrode transducer per period. When a voltage V is applied, the power absorbed by the transducer 

is9 

 

Where the conductance Ga(ζ) and the susceptance Ba(ζ) are part of the parallel elements added  to 

the capacitance Ct to determine the electrical admittance Yt(ζ) 

 

The power of a wave with surface potential φs can be shown to be9 

 

Which leads with Eq. (10) to the simple relation 

 

The fundamental response of a uniform transducer has 



 

 

 

 

where X ≡ Npθ = Np(ζ − ζ0)/ζ0 and Np = M/2 for single-electrode transducers9. Now, it can be 

shown that for single-electrode transducers 

 

 

Therefore, it follows from this development that as ζ → ζ0 

 

Eq. (16) relates the total voltage applied form the radiofrequency source to the Power of the 

acoustic wave leaving an interdigitated transducer that is operating at its resonance frequency ζ0. 

Assuming, for simplicity, that there are no losses in the system due to diffraction and dampening, 

we can relate the power of the traveling surface acoustic wave with the acoustic intensity of the 

leaking surface acoustic wave in the fluid. For the traveling wave within the fluid, we have that 

the acoustic intensity is related to the amplitude of the velocity profile by 

 

Where ρo is the fluid density, c is the speed of sound and u is the fluid velocity related to the 

oscillatory motion of the fluid. Hence, we can relate the Power of the acoustic wave traveling 

within the fluid with the characteristic velocity through a cross section area Ao by 

 

If the power of the acoustic wave exiting the transducer is the power of the traveling wave within the 

fluid Ps = Pf we can then estimate the characteristic velocity of the wave generated by the single-

electrode interdigitated transducer to be 

 

Following this treatment, we conclude that the streaming Reynolds number Rs can be estimated as 

a function of the voltage applied to the transducers 



 

 

 

 
 

were 

 

 

Is a constant defined by the properties of the fluid, the dimensions of the microfluidic channel, 

the piezoelectric properties of the material where the interdigitated transducers are located, and 

the architecture of the transducers. 

  



 

 

 

3. Supplemental figures 

Fig. S1. Temperature and transmitted light intensity of NLC under SSAWs. (a) Change in temperature of 

nematic in a microfluidic channel as a function of input power of RF signal (inset: linear plot). In the region 

of white and color stripe patterns, the temperature remains relatively stable, whereas the turbulent-like flow 

regime significantly increases the temperature of the system. (b) The transmitted light intensity obtained 

from POM images of acoustically induced structures exhibits a peak in the region of color stripe patterns. 

Colors represent different structure regions (see color legend). 

 

Fig. S2. Time scales of acoustically induced structures of NLCs. (a) Response time and (b) relaxation time 

for nematic to reach a steady state after turning the SSAWs on and off, respectively. Colors represent 

different structure regions (see color legend). 

 



 

 

 

 

 
Fig. S3. Numerically predicted acoustic streaming flow (represented with black/white arrows) in the 

microfluidic channel. 

 

 
Fig. S4. A schematic sketch of the director orientation changes across the microfluidic channel (angle θ) 

and along the channel (angle φ). 

 

 

Fig. S5. The angle φ of the director field in the dowser state of the weak flow regime through the height of 

the channel. In the weak flow regime, the nematic molecules bow in the direction of flow, with those closer 

to the walls bowing more and those in the center of the channel bowing less. 

 



 

 

 

Fig. S6. Quantification of the director field angle changes on acoustic pressure nodes across the channel 

(angle θ) and along the channel (angle φ) the channel at 1/2 of the maximum channel height induced by the 

acoustic field in the bowser state. (a) Molecules tilt more across the channel at a higher acoustic intensity 

and less at the same acoustic intensity with a higher nematic flow. (b) A stronger flow bows the molecules 

more along the channel, while higher acoustic intensity decreases the degree of bowing. Numerical analysis 

is done in the weak flow regime with Er between 0 and 0.65. Note that the scale in simulations is orders of 

magnitude smaller than that in experiments. 

 

 
Fig. S7. Experiments show that the response times for acoustically induced stripe patterns are in the sub-

millisecond regime, for flows in the range of -5.5 < Er < 5.5. 
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