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1 Computation of dihedral angle

r1, r2, r3 and r4 are the position vectors of the four atoms in the chain comprising the dihedral.

Firstly the atomic positions are converted to bond vectors, such that b1 = r2− r1, b2 = r3− r2

and b3 = r4− r3. Then, the following unit vectors are calculated, which are normal to the blue

and red planes in Figure S1, respectively.

c1 =
b1 × b2

|b1 × b2|
, (S1)

c2 =
b2 × b3

|b2 × b3|
. (S2)

A third vector, d is also computed which is orthogonal to c2 and b2,

d =
c2 × b2

|b2 × c1|
. (S3)

c2 and d form an orthogonal basis in which c1 has components x and y,

x = c1 · c2 , (S4)

y = c1 · d .

Finally, the dihedral angle ϕ is computed using the two-argument atan2 function

ϕ = atan2(y, x) . (S5)

The atan2 function returns an angle in the range [−π, π] and is needed to differentiate between

positive and negative angles and therefore gauche+ and gauche- dihedrals. If the angle between
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Figure S1: Vectors used in computation of the dihedral angle ϕ for a chain of four atoms.

c1 and c2 is computed simply using the dot product and inverse cosine, the result will always

be positive and in the range [0, π].

2 Heterogeneous monolayers

Figure S2: A textbook compression isotherm with a first order phase transition between I and
II and τ = 0.

Figure S2-left shows the classical textbook picture of a monolayer going through a phase

transition from phase I to phase II upon contraction. At a critical area per molecule AI the

chemical potential of the two phases intersects and the phase transition begins. The process

continues until the whole monolayer is in phase II, i.e. AII. In the meantime the interfacial
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pressure and the chemical potential are constant; Πeq and µeq. In the region between AI and

AII the monolayer is intrinsically heterogeneous. The constant interfacial pressure is contingent

on the negligible phase line tension τ between the two phases. The line tension τ is the energy

required to create a unit of phase line. The simplest type of heterogeneous monolayer is a

single circular domain floating inside the continuous phase (see Figure S3). The condition of

mechanical equilibrium requires that

σc = σd +
τ

R
, (S6)

where R is the radius of the circular domain. The indices d and c designate between the

dispersed (the circular domain) and continuous phase. The condition of chemical equilibrium

requires that µc = µd. However, unlike the simplified classical picture, the non-constant inter-

facial tension would generally lead to non-constant chemical potential. We can assume that

the area per molecule in the two phases is constant irrespective of the ratio between the two,

i.e. Ac = const. and Ad = const.. Then the chemical potential of each phase can be found from

the Gibbs’ isotherm dσ = −1/A dµ:

µi = µeq − Ai(σi − σeq), (S7)

where i is either d or c. The subscript eq designates the values of the parameters at zero

curvature, i.e. negligible contribution of the phase line. Combining the condition of chemical

equilibrium, equation S6, and equation S7, we can find the surface tension of each phase as a

function of the radius of the domain

σc = σeq −
Ad

Ac − Ad

τ

R
, (S8)

σd = σeq −
Ac

Ac − Ad

τ

R
. (S9)

Unfortunately, it is not immediately obvious how equations S8 and S9 relate to the interfacial

tension/pressure that is experimentally measured or simulated for that matter. The interfacial

tension that GROMACS calculates is an average over the whole interface. Therefore, we can

write

σ =
ac
a
σc +

ad
a
σd +

L

a
τ, (S10)

a is the area of the monolayer, ai is the area occupied by the respective phase and L is the

length of the phase line. Such a relationship could also be valid for the experimentally measured

surface tension, depending on the method used. From equation S6 and the last two results, we

can get

σ = σeq −
Ad

Ac − Ad

τ

R
+

πR

a
τ. (S11)

Note that, at a constant ratio d to c, the second and third terms both scale inversely proportional

to the linear size of the system. For a big enough system the terms proportional to the line
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R

ac = a− ad

Ac, σc, µc

ad = πR2

Ad, σd, µd

L = 2πR

Figure S3: A sketch of a heterogeneous monolayer with a single circular domain (d) dispersed
in the continous phase (c).

tension disappear and the system behaves as in Figure S2. In order to add the correction

predicted by equation S11 to the isotherm, the average area per molecule A = a/(Nc + Nd)

needs to be related to R. From geometric consideration that is

A =
aAcAd

(a− πR2)Ad + πR2Ac

(S12)

Finally, we need to consider the relationship between τ and R. We can use the famous Tolman

equation [1] for the dependence of the surface tension on the radius of a spherical droplet by

substituting σ with τ :

τ =
τ0

1 + 2δ/R
, (S13)

where τ0 is the line tension at zero curvature (infinite radius) and δ is the Tolman length (in

the order of ∼ 3 Å). At radii approaching δ the equations break down and further elaboration

is needed. The predictions of equation S11 are presented in Figure S4, starting from a cluster

of 19 particles up to a ad = a/2. As it can be seen the correction looks quite similar to what

is observed from the simulation. Close to the terminal points of the process, the deviation of

interfacial tension from the equilibrium is quite large compared to what is observed from the

simulation. This is a function of the unrealistic lower limit (cluster of only 19 particles) for

the validity of the equations. Figure 2a in the main text shows multiple domains of arbitrary

shape. It can be easily shown that dividing up the domain into smaller circular domains, the

relationship Π(A) remains similar. However, in that case, the interfacial pressure approaches

Πeq slower, because of the smaller size of the domains.
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Figure S4: The addition of the line tension correction according to equations S11, S12 and
S13 superimposed over the simple compression isotherm; Πeq = 16.3 mN/m, AI = 43.6 Å2,
AII = 34.6 Å2, τ = 1 pN, δ = 3 Å, Rmin = 12.2 Å and a = 256 nm2

5



3 2D orientational order parameter

In the main text, the orientational order parameter is computed in three dimensions. The z

axis (the interface normal) is chosen as the natural director vector for the surfactants and is

used to define the angle θ between the surfactant’s principal axis and the director. Here, we

also consider the 2D case where the projection of the principal axis in the xy-plane is used. The

projection is illustrated in Figure S5, obtaining the vector p2D. This requires a more general

method in which the director vector is not known in advance[2, 3].

Firstly, the order parameter tensor is calculated as

Qαβ =
1

N

N∑
i

(
dpiαpiβ − δαβ

d− 1

)
, (S14)

where pi is the (normalized) principal axis of molecule i, d is the number of dimensions, N the

number of molecules, and α/β are the Cartesian indices. Having obtained the tensor Qαβ, the

order parameter is the largest positive eigenvalue of Qαβ and the director is the corresponding

eigenvector. The data in Table S1 shows that the 2D orientational order parameter for 7:1

FTOH is small for a range of areas per molecule spanning the LE-C transition.

p3D

θ

z

x

y
p2D

Figure S5: Projection of surfactant’s principal axis p3D (denoted p1 in the main text) onto the
xy-plane as used in computation of 2D orientational order parameter. Note: The 2D vector
p2D is normalized after projection.
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Table S1: 3D and 2D (x,y) orientational order parameters computed for 7:1 FTOH at different
areas per molecule and 293 K

Order parameter
Area/molecule [Å2] 3D 2D (x,y)

28 0.905 0.057
30 0.896 0.059
35 0.764 0.060
40 0.605 0.059
50 0.433 0.066
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4 Supplementary Figures and Tables
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Figure S6: Correlation between interfacial tension measured in the first half (0-20 ns) and
second half (20-40 ns) of extended simulations of 7:1 FTOH monolayers. Each point represents
one independent 40 ns simulation.
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Figure S7: Density profile ρ(z) of each component at the interface. z = 0 is defined as the
mid-point of the water layer and the interface normal is parallel to z⃗.
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Figure S8: Visualization of crystalline cluster size in simulations at 36 Å2/molecule and 303 K
for different simulation box sizes. Labels are the x/y box dimension (Å).
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Figure S9: The free energy per molecule of a hypothetical perfect 2D van der Waals crystal

as a function of the lattice constant d at different F-block lengths. αfree = π
(
d/2−

√
α/π

)2

,

T = 20oC, α = 24.5 Å2, lCF2 = 1.3 Å, LCF2 = 10.5x10−78 Jm6.
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Table S2: Dependence of computed water/hexane interfacial tension on temperature
temperature [K] σ0 [mN/m]

283 55.23 ± 0.51
293 54.88 ± 0.32
303 54.38 ± 0.29
313 54.29 ± 0.21
323 53.45 ± 0.22

Table S3: Dependence of computed water-hexane interfacial tension on Lennard-Jones cutoff
distance (293 K)

cutoff [nm] σ [mN/m]

1.3 54.88 ± 0.32
1.5 55.17 ± 0.24
1.7 55.06 ± 0.29
1.9 54.91 ± 0.37
2.1 55.18 ± 0.71

Table S4: Effect of x/y box size on computed interfacial pressure, Π, at 36 Å2/molecule for 7:1
FTOH

T [K] area/molecule [Å2] x/y size [Å] Π [mN/m]

303 36 40 18.52 ± 0.57
60 17.86 ± 0.62
80 17.17 ± 0.68
100 16.66 ± 0.44
120 16.42 ± 0.41

313 36 40 20.80 ± 0.81
60 18.96 ± 0.56
80 19.10 ± 0.50
100 18.73 ± 0.52
120 18.97 ± 0.57
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