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Hydrodynamic coupling in the overdamped motion of two hinged sheets

Here, we formulate a relatively simple mechanical model for the motion of two flat sheets that are connected by a hinge, evolving in an
ambient fluid on such a scale that inertial effects are negligible. Seeking a first-order approximation and analytical tractability, we make
use of resistive force theory1,2 to couple the object’s motion to the fluid. This approach neglects secondary hydrodynamic interactions
between the sheets and assigns constant drag coefficients to each sheet.

We focus on the two-dimensional motion of the sheets in a plane orthogonal to both, thus constraining their motion as shown in Fig.
1. In this set up, the two flat sheets are assumed to extend out of the plane of the figure. For simplicity, we consider identical sheets of
equal length, h, here, although we quote more general results for sheets of different length below. Pinning the end of the lower sheet
to a substrate (s = 0), the configuration of the connected object in this setting is captured by the orientation θl of the lower sheet and
the orientation ϕ of the upper sheet, both measured relative to an axis fixed in the laboratory frame. We will first formulate the model
in terms of θl and ϕ and later rewrite it in terms of θl and θu := ϕ −θl, the relative angle between the sheets. Noting that each sheet is
assumed to be flat, we define the tangents ttt l and tttu and normals nnnl and nnnu to each sheet, given respectively by

ttt l = cosθleeex + sinθleeey , nnnl =−sinθleeex + cosθleeey , (1a)

tttu = cosϕeeex + sinϕeeey , nnnu =−sinϕeeex + cosϕeeey , (1b)

where eeex and eeey form part of the right-handed orthonormal basis {eeex,eeey,eeez} of the laboratory frame (Fig. 1). With this notation, we can
write the position xxx(s) of a material point in the plane as

xxx(s) =

{
sttt l if s ∈ [0,h) ,

httt l +(s−h)tttu if s ∈ [h,2h] ,
(2)

where s ∈ [0,2h] is an arclength parameter measured from the pinned end, which we have taken to be the origin of the laboratory frame
(s = 0, Fig. 1). We will relate the forces imparted on each sheet by the fluid to the velocity of the sheets, which we compute as

ẋxx(s) =

{
sθ̇lnnnl if s ∈ [0,h) ,

hθ̇lnnnl +(s−h)ϕ̇nnnu if s ∈ [h,2h] .
(3)

Employing resistive force theory1,2, we suppose the existence of tangential and normal resistive force coefficients, Ct and Cn, for
each sheet such that the force per unit length fff (s) exerted on each sheet is given by

fff (s) =Ct [ẋxx(s) · ttt(s)] ttt(s)+Cn [ẋxx(s) ·nnn(s)]nnn(s) , (4)

where ttt(s) and nnn(s) denote the tangent and normal associated with arclength s, for brevity. Here, Ct < 0 and Cn < 0, so that fff indeed
captures a notion of hydrodynamic drag. Again, we assume for simplicity that each sheet has the same resistive force coefficients;
this assumption is also relaxed in the general results quoted below. In fact, the results of our analysis will not depend strongly on the
appropriate values of Cn and Ct , though we remark that, in the context of thin filaments rather than sheets, the approximate relation
Cn ≈ 2Ct holds1,2, with Ct/Cn < 1 expected for more general sheet shapes3.

In the inertialess regime appropriate for the scales involved in this problem, equations of moment balance apply on each sheet.
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That is, the moments induced by the hydrodynamic drag must instantaneously balance those induced by any applied forces or torques.
These two conditions will uniquely determine θl and ϕ. Here, we will assume that the system is driven by two point forces that act at
the connecting hinge and the free end of the upper sheet, denoting the magnitudes of these forces by Fl and Fu, respectively. Further,
we will consider only prescribed forces that drive rotation of the sheets by acting in the normal direction, so that they exert forces Flnnnl
and Funnnu, respectively. We additionally allow for the possibility of a prescribed (though potentially state-dependent) point torque meeez

to act at the connecting hinge.

With these driving terms, it is convenient to write the two constraints of moment balance as two integrals, one over only the upper
sheet and another over both sheets, resolving moments about the hinge and the lower end, respectively. Explicitly, we have

0 = eeez ·
∫ 2h

h
[xxx(s)− xxx(h)]× fff (s) ds+hFu +m , (5a)

0 = eeez ·
∫ 2h

0
xxx(s)× fff (s) ds+hFl +hFu[1+ cos(ϕ −θl)] , (5b)

imposing a moment-free condition at the end of the upper sheet. Computing the required integrals along each sheet yields the explicit
linear system of equations

−Cnh2

6

[
2 2+3cosθu

2+3cosθu 4+6cosθu (1+ cosθu)+6 Ct

Cn sin2
θu

][
θ̇u

θ̇l

]
=

[
1 0 1

(1+ cosθu) 1 0

] Fu

Fl
m/h

 , (6)

recalling that θu = ϕ −θl is the relative angle between the two sheets and that Cn < 0. We can manipulate this system by subtracting
(1+ cosθu) multiplied by the first equation from the second to simplify the dependence on Fu and Fl:

−Cnh2

6

[
2 −2α̂(θu)

cosθu −cosθu/β̂ (θu)

][
θ̇u

θ̇l

]
=

[
1 0 1
0 1 −(1+ cosθu)

] Fu

Fl
m/h

 , (7)

where

α̂(θu) =−
[

1+
3
2

cosθu

]
, β̂ (θu) =

−cosθu

2+ cosθu (1+3cosθu)+6(Ct/Cn)sin2
θu

. (8)

Equation (7) shows how the angular variables relate to the corresponding forces, and highlights how a particular choice of the active
hinge torque m could qualitatively change this relationship (for instance if m ∝ θ̇u or m ∝ θ̇l). For simplicity here, we focus on a free
hinge with m = 0, leading to the results quoted in the main text:

θ̇u = α̂(θu)θ̇l −
3

Cnh2 Fu, (9a)

θ̇l = β̂ (θu)θ̇u +
6β̂ (θu)

cos(θu)Cnh2 Fl. (9b)

For sheets oriented approximately parallel to one another, in particular those with |θu| ≪ 1, the functions α̂ and β̂ simplify substantially
to leading order in powers of θu to yield the approximate, constant-coefficient system from Eq. (7),

2θ̇u =−5θ̇l −
6

Cnh2 Fu , (10a)

θ̇u =−6θ̇l −
6

Cnh2 Fl . (10b)

From this, we can see that if one were to drive the system via only the lower sheet, so that Fu = 0 and Fl ̸= 0, the reorientation rate
of the upper sheet is θ̇u ∼ −5θ̇l/2. Conversely, if one were to drive the system via only the upper sheet, so that Fl = 0 and Fu ̸= 0, the
reorientation rate of the lower sheet is θ̇l ∼ −θ̇u/6. Hence, in this sense, the coupling between θu and θl is dominated by a negative
feedback in the motion of the upper sheet. More generally, the application of any driving force of the form considered here has a
greater impact on the relative orientation of the upper sheet than it does on the orientation of the lower sheet, at least in the small
relative-angle regime. The validity of these conclusions outside this small-angle regime hinges on the relative size of α̂ and β̂ in Eq. 9.
These are shown for a range of angles in Fig. 2, which illustrates that they differ by approximately an order of magnitude across a large
range of θu; this difference confirms that forcing drives larger changes in θu than in θl in general.

More generally, it is straightforward, if somewhat involved, to repeat this analysis allowing for different lengths hl and hu of each
sheet, and different resistive force coefficients Cn

u, Cn
l , Ct

u, Ct
l . Omitting the details and no longer assuming m = 0, the equivalent
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expressions in that case also involve the length ratio R ≡ hu/hl and the normal resistive force ratio Γ ≡Cn
u/Cn

l and are

θ̇u = α̂(θu)θ̇l −
3

Cn
uh2

u

(
Fu +

m
hu

)
, (11a)

θ̇l = β̂ (θu)θ̇u +
6β̂ (θu)

Cn
uh2

u(3−2R)cosθu

[
Fl −R(1+ cosθu)

m
hu

]
, (11b)

with

α̂(θu) =−
[

1+
3

2R
cosθu

]
, β̂ (θu) =

(3−2R)cosθu

2/(ΓR2)+ cosθu [3−2R+(6/R−3)cosθu]+6[Ct
u/(Cn

uR)]sin2
θu

. (12)

These expressions illustrate how the strength of coupling between the sheets can be modified by suitable choice of the ratios R and Γ,
as well as by the active hinge torque m if it has some dependence on θ̇u or θ̇l.

Deriving a diffusion coefficient

We derive an approximate rotational diffusion coefficient for each face of the kirigami, assuming that faces are entirely uncoupled. Let
us consider a face in a fluid at thermostat temperature T , connected by a hinge to a surface such that it can only rotate around one
edge. If this edge is a principle axis of inertia, the equation of motion for the angle θ(t) with the surface is,

Iθ̈(t) =− frθ̇(t)+Ξξ (t) , (13)

where t is time, I is the corresponding momentum of inertia, fr is the frictional resistance coefficient, ξ (t) is a stochastic term with
zero mean and variance one, and Ξ sets the amplitude of the thermal fluctuations in the force. Thus, for θ(0) ≡ 0, the mean-square
displacement of the angle θ(t) is,

⟨θ 2(t)⟩ ∼
[

Ξ2

I f 2
r

]
t . (14)

The dependence of Ξ on T and fr can be derived by invoking equipartion as follows. The equation for the angular velocity ω ≡ θ̇ is

Iω̇(t) =− frω(t)+Ξξ (t) . (15)

Assuming the same initial velocity ω(0)≡ ω0, the mean-square velocity is then,

⟨ω2(t)⟩= ω
2
0 exp

(
−2 fr

I
t
)
+

Ξ2

2I fr

[
1− exp

(
−2 fr

I
t
)]

. (16)

Asymptotically, from the equipartition theorem, ω2 = kBT/I, where kB is the Boltzmann constant, and thus,

Ξ =
√

2 frkBT . (17)

Combining with Eq. (14), we obtain the Einstein relation,

D =
kBT

fr
. (18)

The frictional resistance coefficient fr of the plate is computed as the ratio of applied torque and the resulting angular velocity.
Computing this ratio is in fact a subproblem of the above section, exactly equivalent to considering the torque balance on only the
bottom face. This immediately yields

fr =−Cnh3

3
(19)

for normal resistive coefficient Cn. In the absence of an exact expression for Cn for a general plate, we approximate the face as a
circular disc of radius h/

√
π. A circular disc with this radius that moves at unit speed normal to its radii in a medium of viscosity µ

experiences total drag 16µh/
√

π 4. Crudely dividing this quantity by its diameter to yield a representative drag per unit length gives a
drag coefficient of Cn =−8µ. Hence, we approximate

fr ≈
8µh3

3
. (20)

Finally, the Einstein relation gives

D =
kBT

fr
=

3kBT
8µh3 (21)

as an estimate for the rotational diffusion coefficient of a single face.
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In our simulations, the rotational diffusion coefficient was fixed to D = 0.64 rad2 s−1. Figure 3 shows that, qualitatively, the depen-
dence (i.e. the position of the peak) of the normalized folding rate kα/k0 (k0 being kα for α = 0) on α is largely independent of the
exact value of the diffusion coefficient for structures whose face height h is on the scale of O(µm) to O(10 µm). At larger scales (i.e. by
increasing h further), gravitational torques will also need to be accounted for to determine the overall folding behavior5.

Mapping to a first passage time problem

For pyramids with less than five faces, it has been shown that the folding time is dominated by the time it takes for the first pair of
faces to close6,7. Equally, for two-level structures, if we assume that the lower level folds much faster than the upper one, the folding
time can be estimated as the time it takes for the first pair of faces of the upper level to meet at their target angle φu, after the lower
level has closed completely. The time evolution of the angles of these two faces can be mapped into a two-dimensional Brownian walk
(one dimension for each face) and we can neglect collisions between faces, as suggested by molecular dynamics simulations in Ref.7.
If we discretize the configuration space, the motion of the faces corresponds to a random walk on a lattice with L points per dimension
with reflective boundaries. In the most general case, such a two-dimensional lattice is bound at −π and π along each direction and
spaced every ∆ = π/180. Finding the closing time of a pair of faces corresponds to determining the first-passage time for the two-
dimensional random walk visiting the lattice site φφφ = (φu,φu), equivalent to both faces reaching φu at the same time. The walk begins
at θθθ 0 = (θ01,θ02), the subscripts 1 and 2 referring to each of the two faces respectively. The Mean First Passage Time (MFPT) for such a
walk can be obtained through8

Tθθθ 0→φφφ = 8

[
L−1

∑
θ1=1,θ2=1

Kθ1,θ2(θθθ 0,φφφ)+
1
2

L−1

∑
θ1=1

Kθ1,0(θθθ 0,φφφ)+
1
2

L−1

∑
θ2=1

K0,θ2(θθθ 0,φφφ)

]
, (22)

where θθθ = (θ1,θ2) represents a generic lattice position, and

Kθ1,θ2(θθθ 0,φφφ) =

[
cos2

[(
φu +

1
2

)
θ1π

L

]
cos2

[(
φu +

1
2

)
θ2π

L

]
− cos

[(
θ1 +

1
2

)
θ1π

L

]
cos

[(
θ2 +

1
2

)
θ2π

L

]
×

×cos
[(

φu +
1
2

)
θ1π

L

]
cos

[(
φu +

1
2

)
θ2π

L

]]
×

[
2− cos

(
θ1π

L

)
− cos

(
θ2π

L

)]−1

.

(23)

Equation (22) represents the MFPT while Eq. (23) is the lattice propagator function for a two-dimensional random walk in a
bounded domain8. A summation over the whole discretized space is therefore considered in order to establish the possible evolutions
of the two-dimensional walk starting at θθθ 0 and ending at φφφ .

If we assume that the motion of the different faces in the upper level is uncorrelated and that the probability distribution of the
angles N (µ,σ) is a Gaussian reflected at the lattice boundaries, the probability of starting at a given lattice position can be calculated
as

P(θθθ 0) = N (µ,σ)|θ01
N (µ,σ)|θ02

. (24)

We can thus obtain an expected MFPT, ⟨τf(µ)⟩, by first calculating Tθθθ 0→φφφ for every lattice position, multiplying it by the probability
P(θθθ 0) of starting at that point and integrating over the whole range of possible starting positions θθθ 0

⟨τf(µ)⟩=
∫∫

Tθθθ 0→φφφ P(θθθ 0)dθθθ 0 . (25)
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Supplemental figures

Fig. 1 Model parameterization. Each set of the kirigami’s lateral faces (Fig. 1) can be modeled as two flat sheets connected by a hinge with the
lower sheet tethered to the substrate (s = 0). In the schematics, the sheets are assumed to extend in and out of the plane of the diagram, with all
motion occurring within the plane. The configuration of the connected object is captured by the orientation θl of the lower sheet and ϕ of the upper
sheet (both defined in the laboratory frame, {eeex,eeey,eeez}). Alternatively, the orientation of the upper sheet can be captured by θu := ϕ −θl. The object
is driven by two point forces, Fl and Fu, acting respectively on the lower and upper hinges and directed along the normals to each sheet (nnnl and nnnu).

Fig. 2 Relative coupling between θu and θl as a function of θu. Functions −α̂(θu) (solid) and −β̂ (θu) (dashed) on a logarithmic scale for a range of
θu, for the case of equal sheet lengths and equal resistive force components, highlighting the order-of-magnitude dominance of the former over the
latter. Recall that these represent the negative feedback of motion of the lower face on the upper and motion of the upper on the lower, respectively
(see eq. (9)). The lines have Ct/Cn = 1/2, appropriate for slender filaments; the shaded region shows the range of possible values for 0 ≤Ct/Cn ≤ 1,
illustrating that the qualitative result is largely insensitive to this ratio.
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Fig. 3 Dependence of the normalized folding rate on the rotational diffusion coefficient. Normalized folding rate kα/k0 as a function of coupling
parameter α for two exemplary kirigami structures (as in Fig. 2) with different rotational diffusion coefficients: (a) a hourglass (φl =

π

3 rad, φu =− π

6 rad)
and (b) a diamond (φl = 0.61 rad, φu = 1.92 rad). Folding rates are normalized to k0 (kα for α = 0). The shaded areas represent one standard error
around the average values from 5000 folding events per value of rotational diffusion constant, each lasting up to the cutoff time τcut = 2 ·108∆τ (with
∆τ being the simulation time step).

Fig. 4 Optimal rate vs. optimal yield. (a) Optimal α value (αopt) leading to the highest folding rate max(kα ), (b) highest folding yield max(yield) at
any α, (c) ratio between yield at αopt (yieldαopt ) and max(yield) at any value of α, (d) distance between α values that optimizes yield (αyield) and αopt
for different target structures. In (a-d), the black dashed isolines show the optimal values of α that lead to the highest folding rates and the black
solid lines highlight structures whose folding is optimal in the absence of coupling (α = 0) for reference. Each data point is obtained as an average of
5000 folding events.
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Fig. 5 Probability distributions of the upper level’s faces at the closing time of the lower level. Examples of probability distributions P(θ i
u) of the

angles θ i
u of the upper level’s faces at the closing time of the lower level t2 for the structure of Fig. 1 for α = −1, α = 0 and α = 1. The vertical

dashed lines represent the means µ(α) = ⟨θ i
u(t2)⟩α of the same-color distributions. Each distribution is obtained from 50000 structures.

Fig. 6 Target geometry and optimal α. For a given α, the means µ(α) = ⟨θ i
u(t2)⟩α (solid lines) of the probability distributions of the angles θ i

u of
the upper level’s faces at the closing time t2 of the lower level are well reproduced by the structures (represented as combinations of the two target
angles φu and φl) with the highest folding rate at that value of α (shaded regions): (a) α = 2, (b) α = 3, (c) α =−2 and (d) α =−3. The black solid
lines show µ(α = 0) for reference. The shaded regions represent all structures that could have the highest folding rate at that value of α once the
numerical uncertainty is accounted for. For a given structure, this uncertainty around the position of max(kα ) is calculated taking the largest between
the discretization step in α and the range of data points around the peak falling within the standard error.

Journal Name, [year], [vol.],1–8 | 7



Notes and references
1 G. J. Hancock, Proc. Math. Phys. Eng. Sci., 1953, 217, 96–121.
2 J. Gray and G. J. Hancock, J. Exp. Biol., 1955, 32, 802–814.
3 L. Koens and E. Lauga, Phys. Fluids, 2016, 28, 013101.
4 A. M. Davis, J. Fluid Mech., 1991, 231, 51–71.
5 T. G. Leong, P. A. Lester, T. L. Koh, E. K. Call and D. H. Gracias, Langmuir, 2007, 23, 8747–8751.
6 T. S. A. N. Simões, H. P. M. Melo and N. A. M. Araújo, Eur. Phys. J. E. Soft Matter, 2021, 44, 46–46.
7 H. Melo, C. Dias and N. Araújo, Commun. Phys., 2020, 3, 154.
8 L. Giuggioli, Phys. Rev. X, 2020, 10, 021045.

8 | 1–8Journal Name, [year], [vol.],


