Supporting Information for

Mechanochromic polymer blends made with an excimer-forming telechelic sensor molecule

Marta Oggioni,^a Jess M. Clough^{a,b} and Christoph Weder*^{a,b}

^aAdolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland.

^bNational Center of Competence in Research Bio-inspired Materials, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland.

1. Supporting Data

Figure S1. Scheme of the synthesis of the excimer-forming, pyrene-terminated poly(ethylene-*co*-butylene) (**Py-PEB**). **Py-PEB** was prepared from 1-pyrenebutyric acid and dihydroxyl-terminated poly(ethylene-*co*-butylene) (OH-PEB) (M_n = 3100 g mol⁻¹). *Reagents and* conditions: *i*) DCC, DMAP, CH₂Cl₂, rt, N₂, 28 h, 32%.

Figure S2. Size-exclusion chromatography (SEC) traces of **Py-PEB** detected by refractive index (dRI) and UV-Vis absorption detectors. Since the PEB backbone does not absorb light in the UV-vis regime, the overlap of the two traces shows that the pyrene moieties are covalently attached to the telechelic PEB core.

Figure S3a,b. a) ¹H-NMR spectrum of Py-PEB; b) ¹H-NMR spectrum of OH-PEB recorded in CDCl₃.

Figure S3c,d. c) ¹³C-NMR spectrum of Py-PEB; d) ¹³C-NMR spectrum of OH-PEB recorded in CDCl₃.

Figure S4. FTIR spectra of Py-PEB (blue) and OH-PEB (black).

Figure S5. a) UV-Vis absorption spectrum of **Py-PEB** in toluene ($c = 1 \mu mol L^{-1}$). b) Photoluminescence spectra of a toluene solution of the low-molecular weight model compound 1-pyrenebutanol ($c = 2 \mu mol L^{-1}$, black), a **Py-PEB** solution in toluene ($c = 1 \mu mol L^{-1}$, blue), and **Py-PEB** in the liquid bulk state (cyan). The excitation wavelength was, in all cases, 310 nm. The emission spectra show exclusively monomer (1-pyrenebutanol solution), predominantly monomer (**Py-PEB** solution), and predominantly excimer (bulk **Py-PEB**) emission.

Figure S6. a) Differential scanning calorimetry (DSC) traces (first and second heating and first cooling scans) of **Py-PEB**. The material is completely amorphous, with a T_g at ca. -44°C. b) DSC traces (second heating) of the parent OH-PEB (black) and **Py-PEB (**blue). The curves show that the T_g of **Py-PEB** (ca. - 44°C) is slightly higher than the T_g of OH-PEB (ca. -50°C). All DSC traces were acquired at heating and cooling rates of 10°C min⁻¹.

Figure S7. Thermogravimetric analysis (TGA) traces of **Py-PEB** (blue) and the parent OH-PEB (black). The pyrene-functionalized telechelic shows a slightly higher onset temperature of thermal degradation (326°C) than the parent OH-PEB (318°C). The traces were acquired at a heating rate of 10°C min⁻¹.

Figure S8. a) Plot of the excimer-to monomer intensity ratio I_E/I_M of PI/**Py-PEB**₅ film samples, stretched to 200% strain at a strain rate of 50% min⁻¹. The excitation wavelength was 310 nm. b) UV-Vis absorbance spectra of PI/**Py-PEB**_{0.5} and PI/**Py-PEB**₅ film samples. A higher level of light scattering around 397 nm (I_M) could explain why the neat samples show lower I_E than the stretched samples.

Figure S9. Plot of the excimer-to-monomer intensity ratio I_E/I_M of PCL/**Py-PEB**₁ film samples, stretched to 250% strain at a strain rate of 50% min⁻¹. The excitation wavelength was 310 nm.

Figure S10. a) Plot of the excimer-to monomer intensity ratio I_E/I_M of PU/**Py-PEB**_{0.2} film samples, stretched to 250% strain at a strain rate of 50% min⁻¹. The excitation wavelength was 310 nm. b) UV-Vis absorbance spectra of PU/**Py-PEB**_{0.1} and PU/**Py-PEB**_{0.5} film samples. Scattering of light at 397 nm here does not vary greatly between neat and stretched samples. The origin of the increase in I_E between 0 and 50% strain is still unclear for these samples.

Figure S11. Fluorescence microscopy images of films of the following blends: a) PI/**Py-PEB**₅; b) PI/**Py-PEB**₁₀; c) PU/**Py-PEB**_{0.2}; d) PU/**Py-PEB**₁; e) PCL/**Py-PEB**₁. Droplet formation is clearly visible in c) d) and e), but less so in a) and b). Images were recorded with a wideband UV filter (λ_{ex} = 330-385 nm; λ_{em} = 420-900 nm, Olympus U-MWU2).

Figure S12. Magnification of the low-strain regime (0-100%) of the data shown in Figure 3c.

Figure S13. Possible scenarios of in-situ photoluminescence measurements during the stress-strain test of a polymer film that shows necking. a) Stress-strain curve of a PCL/**Py-PEB**₁ film. b) Fluorescence spectra of the pristine film and of the deformed film (50% strain) recorded in different locations of the sample. The four different spectra were acquired in the regions shown in pictures c)-f).

Figure S14. a) Cyclic deformation experiment of a PU/**Py-PEB**_{0.2} film. The sample was stretched and relaxed at a strain rate of ca. 50% min⁻¹. Fluorescence spectra were recorded of the stretched and relaxed sample for each cycle. b) Stress-strain curves acquired during the cyclic deformation experiment shown in a). c) Photoluminescence spectra of a PU/**Py-PEB**_{0.2} film that was stretched once, relaxed, and measured again 1 h after relaxation. d) Stress-strain curve relative to the stretching of the sample in c).