Supporting Information

Luminescent solvent-free liquids based on Schiff-base boron difluoride complexes with polyethylene glycol chains

Masahiro Ikeshita,*a Miku Ichinosea and Takashi Tsuno*a

^a Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Chiba 275-8575, Japan

Table of Contents

- 1. NMR Chart
- 2. Single X-ray Structure Analysis
- 3. Photophysical Properties
- 4. Computational Details
- 5. Cartesian Coordinates (in Å)

1. NMR Chart

Fig. S1 (a) 1 H and (b) 13 C NMR spectra of 1a in CDCl₃.

Fig. S2 (a) 1 H and (b) 13 C NMR spectra of 1b in CDCl₃.

Fig. S3 (a) 1 H and (b) 13 C NMR spectra of 2a in CDCl₃.

Fig. S4 (a) 1 H and (b) 13 C NMR spectra of 2b in CDCl₃.

S5

Fig. S5 (a) 1 H and (b) 13 C NMR spectra of 3a in CDCl₃.

Fig. S6 (a) 1 H and (b) 13 C NMR spectra of **3b** in CDCl₃.

Fig. S7 (a) 1 H and (b) 13 C NMR spectra of 4a in CDCl₃.

Fig. S8 (a) 1 H and (b) 13 C NMR spectra of 4b in CDCl₃.

2. Single X-ray Structure Analysis

(a)

Fig. S9 Packing structure of **1b**. (a) The *a*-axis and (b) *b*-axis projections showing $H \cdot O$ (orange broken lines) and $H \cdot F$ (green broken lines) interactions.

Fig. S10 Packing structure of **2b**. The *a*-axis projections showing π - π (white broken lines), H··O (orange broken lines) and H··F (green broken lines) interactions.

Fig. S11 Packing structure of **3b**. (a) The *b*-axis projections showing π - π (white broken lines) and H··F (green broken lines) interactions.

Fig. S12 Packing structure of **4b**. The *b*-axis projections showing $H \cdot \cdot O$ (orange broken lines) and $H \cdot \cdot F$ (green broken lines) interactions.

Table S1. Crystal data and structural refinement details for complexes 1b-4b.

	1b	2b	3b	4b
Formula	$C_{10}H_{12}BF_2NO_2 \\$	$C_{14}H_{14}BF_2NO_2$	$C_{14}H_{14}BF_2NO_2 \\$	$C_{14}H_{14}BF_2NO_2$
$M_{ m F}$	227.02	277.07	277.07	277.07
<i>T</i> [K]	113.15	113.15	113.15	113.15
Crystal colour, habit	colourless, needle	colourless, brock	yellow, brock	yellow, plate
Crystal size [mm]	0.425×0.130×0.065	0.981×0.525×0.348	0.50×0.50×0.50	0.50×0.275×0.15
Crystal system	orthorhombic	monoclinic	monoclinic	monoclinic
Space group	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (#19)	$P2_1/n$ (#14)	Cc (#9)	$P2_1/c$ (#14)
<i>a</i> [Å]	5.8281(11)	9.7046(8)	12.7885(11)	24.5191(14)
<i>b</i> [Å]	11.540(2)	15.3874(9)	12.1016(11)	6.0356(3)
<i>c</i> [Å]	15.611(2)	9.7174(7)	8.5177(9)	17.3921(9)
α [°]	90	90	90	90
β [°]	90	113.886(8)	105.467(10)	94.286(5)
γ [°]	90	90	90	90
V [Å ³]	1049.9(3)	1326.80(18)	1269.6(2)	2566.6(2)
Ζ	4	4	4	8
$D_{\text{calcd}} [\text{g cm}^{-3}]$	1.436	1.387	1.450	1.434
Abs coeff (mm ⁻¹)	0.121	0.110	0.115	0.113
Abs correct	multi-scan	multi-scan	multi-scan	multi-scan
Transmiss max/min	1.000/0.966	0.963/0.900	1.000/0.633	1.000/0.827
F (000)	472	576	576	1152
θ range (°)	4.39-60.65	5.004-60.618	4.718-60.818	4.698-60.788
Rflns/unique	6264/2953	7336/3483	5208/2822	26908/7434
$R_{ m int}$	0.0512	0.0198	0.0257	0.0373
Data/params	2953/0/146	3483/0/182	2822/2/190	7434/0/363
rgest diff. peak and hole (e Å-3)	0.27/-0.29	0.31/-0.22	0.17/-0.36	0.38/-0.28
$R_1 (I > 2\sigma(I))^{[a]}$	0.0655	0.0396	0.0386	0.0514
w R_2 (all reflections) ^[b]	0.1180	0.1063	0.0971	0.1197
Goodness of fit	0.980	1.084	1.018	1.015
CCDC No.	2298108	2298109	2298110	2298111

[a] $R_1 = \Sigma(|F_o| - |F_c|) / \Sigma(|F_o|)$. [b] $wR_2 = [w(F_o^2 - F_c^2)^2] / wF_o^2)^2]^{1/2}$.

3. Photophysical Properties

Fig. S13 UV-vis absorption spectra of 2.0×10^{-4} M solutions of 1a–4a and 1b–4b in CH₂Cl₂ at 298 K.

Fig. S14 Photographs of 2.0×10^{-4} M solutions of **1a–4a** and **1b–4b** in CH₂Cl₂ at 298 K under UV illumination at 365 nm.

Fig. S15 Normalized emission spectra of 2.0×10^{-4} M solutions of **1a–4a** and **1b–4b** in CH₂Cl₂ ($\lambda_{ex} = 350$ (**1a–3a** and **1b–3b**), 400 nm (**4a** and **4b**)). The inset shows the CIE colour coordinates of the emissions.

Fig. S16 Normalized emission spectra of crystals of 1b, 2b and 4b ($\lambda_{ex} = 350$ (1b and 2b), 400 nm (4b)). The inset shows the CIE colour coordinates of the emissions.

Fig. S17 Emission spectra of (a) **1a** in the solvent-free liquid state and (b) composite **V** by exciting at different wavelengths (300-400 nm).

4. Computational Methods

Fig. S18 Molecular orbitals (overhead views) and eigenvalues [eV] for the frontier orbitals of **1b**–**4b** estimated from DFT calculations (B3LYP/6-31+G(d,p)) on the basis of the optimized geometries in the S_1 excited states.

Table S2. Selected data for excitation energy, major configuration, coefficient, and oscillator strength for **1b–4b** (for the geometries optimized in the S_0 state).^[a]

Compound	State	Excitation energy (eV)	Major configuration ^[b]	Coefficient	Oscillator strength
1b	S ₁	3.60 (345 nm)	HOMO→LUMO	0.695	0.0839
2b	S_1	3.43 (361 nm)	HOMO→LUMO	0.697	0.1536
3b	S_1	3.24 (383 nm)	HOMO→LUMO	0.693	0.1171
4b	S_1	2.82 (439 nm)	HOMO→LUMO	0.699	0.0281

[a] Estimated by TD-DFT (B3LYP/6-31+G(d,p)) calculations based on the optimized geometries. [b] Molecular orbitals are shown in Fig. 6.

Table S3. Selected data for excitation energy, major configuration, coefficient, and oscillator strength for **1b–4b** (for the geometries optimized in the S_1 state).^[a]

geometries optimized in	life 31 state).				
Compound	State	Excitation energy (eV)	Major configuration ^[b]	Coefficient	Oscillator strength
1b	S_1	2.98 (417 nm)	HOMO→LUMO	0.702	0.0593
2b	S_1	3.11 (399 nm)	HOMO→LUMO	0.700	0.1429
3b	S_1	2.85 (436 nm)	HOMO→LUMO	0.699	0.0974
4b	S_1	2.16 (574 nm)	HOMO→LUMO	0.705	0.0220

[a] Estimated by TD-DFT (B3LYP/6-31+G(d,p)) calculations based on the optimized geometries. [b] Molecular orbitals are shown in Fig. S18.

5. Cartesian Coordinates (in Å)

1.154181 -0.85016
-0.85016
0 592145
0.585145
0.034293
-0.638801
-0.859774
-1.388573
0.307531
-0.426497
-0.695841
-1.256832
0.761041
1.322319
0.481197
0.833855
-0.249735
-0.45647
-1.059663
-1.216733
-2.008713
-0.018839
-0.321649
0.960381
1.070419
1.024709
2.05729
2.05729 0.931387

Table S4. Cartesian coordinates (in angstrom) of 1b in S_0 state^[a].

Table S5. Cartesian coordinates (in angstrom) of $2b$ in S_0 state ^[a] .
--

atom	Х	У	Z
F	-2.510857	-1.54929	1.202906
F	-2.625806	-2.483134	-0.896567
0	-0.542569	-2.328225	0.163732
0	-2.571593	2.384219	0.204386
Ν	-1.664895	-0.279473	-0.663348
С	0.691248	-0.314102	-0.208942
С	-0.500245	0.311	-0.676204
Н	-0.462766	1.31619	-1.085806
С	1.971289	0.363646	-0.185819
С	0.599497	-1.670496	0.173985
С	1.770135	-2.389177	0.54933
Н	1.659192	-3.432597	0.822938
С	2.144129	1.731266	-0.516375
Н	1.290617	2.340437	-0.793577
С	3.128585	-0.380472	0.203251
С	2.983936	-1.758007	0.559989
Н	3.874351	-2.309524	0.851293
С	-2.852458	0.437858	-1.148393
Н	-3.577718	-0.309942	-1.474918
Н	-2.577391	1.055492	-2.009905
С	4.396075	0.251719	0.234336
Н	5.262262	-0.33338	0.532425
С	3.394396	2.323743	-0.479157
Н	3.494904	3.373889	-0.737644
С	4.53471	1.583359	-0.103688
Н	5.509713	2.059754	-0.076891
С	-3.47263	1.321214	-0.07005
Н	-4.430802	1.717073	-0.443899
Н	-3.665063	0.731087	0.835933
В	-1.866828	-1.713068	-0.026293
С	-2.966843	3.181572	1.310648
Н	-3.029604	2.582438	2.230087
Н	-3.940521	3.660638	1.129685
Н	-2.206458	3.955226	1.43571

Table S6.	Cartesian	coordinates	(in angstror	n) of 3b ir	N S ₀ state ^[a]

atom	Х	у	Z
F	-1.722131	2.092492	1.000438
F	-1.205973	2.65648	-1.167296
0	0.324535	1.386574	0.089554
0	-3.838611	-1.442802	0.437614
Ν	-1.815602	0.375648	-0.694286
С	0.228739	-0.870845	-0.661647
С	2.336137	0.138934	0.114013
С	0.92878	0.24231	-0.154385
С	2.99758	-1.101625	-0.146199
С	4.386458	-1.18918	0.121995
Н	4.899301	-2.127289	-0.072432
С	0.918341	-2.098979	-0.912029
Н	0.353513	-2.941626	-1.302352
С	5.082817	-0.104645	0.62188
Н	6.147169	-0.191575	0.820903
С	-4.059086	-0.04741	0.29313
С	-1.167302	-0.737055	-0.903035
Н	-1.727691	-1.594399	-1.273235
С	3.068064	1.238244	0.625398
Н	2.543406	2.168382	0.812822
С	4.421136	1.118213	0.876046
Н	4.978918	1.963198	1.267919
С	-3.267032	0.43702	-0.916828
Н	-3.526214	-0.173111	-1.788487
Н	-3.525031	1.475737	-1.13297
С	2.256859	-2.214246	-0.664431
Н	2.777188	-3.147828	-0.855389
С	-4.416344	-1.981463	1.616952
Н	-5.508987	-1.853076	1.620835
Н	-3.99913	-1.507539	2.516989
Н	-4.18238	-3.047971	1.629955
В	-1.095682	1.686096	-0.176084
Н	-3.73929	0.49388	1.193578
Н	-5.128493	0.156637	0.121493

Table 57. Cartesian coordinates (in angsuoni) of $=0$ in 5_0

atom	Х	У	Z
F	2.309346	-1.587798	1.343972
F	2.374112	-2.72228	-0.657795
0	0.302875	-2.022475	0.174801
Ο	3.378565	2.083527	0.142171
Ν	1.945998	-0.343635	-0.683429
С	-0.66409	-1.116269	0.051442
С	-0.376642	0.187087	-0.481166
С	-2.724399	0.822379	-0.29144
С	-3.011101	-0.487461	0.238955
С	-1.396437	1.122419	-0.646061
Н	-1.159981	2.103121	-1.053436
С	0.969918	0.490081	-0.86888
Н	1.184627	1.44831	-1.340558
С	-1.969522	-1.430876	0.394292
Н	-2.179692	-2.419722	0.788902
С	-3.784484	1.764573	-0.443074
Н	-3.554807	2.748583	-0.84397
С	3.315716	0.028512	-1.067516
Н	3.284645	0.624349	-1.985615
Н	3.861995	-0.895274	-1.266368
С	-4.3591	-0.787927	0.59332
Н	-4.586191	-1.771874	0.993967
С	-5.071832	1.437392	-0.089821
Н	-5.873638	2.159647	-0.208058
С	4.020766	0.822247	0.028379
Н	3.975724	0.274568	0.978774
Н	5.077388	0.952467	-0.255912
С	-5.35721	0.146035	0.433687
Н	-6.377777	-0.103079	0.709975
В	1.72942	-1.739397	0.080185
С	3.843116	2.850882	1.243159
Н	3.281912	3.787542	1.239639
Н	4.916026	3.074594	1.148946
Н	3.669846	2.327055	2.193762

Table S8. Cartesian coordinates (in angstrom) of $\mathbf{1b}$ in S_1 st	ate ^[a] .

atom	х	у	Z
F	0.824796	1.842585	1.34022
F	0.386669	2.824762	-0.696744
0	-1.265199	1.529339	0.334318
0	2.996464	-1.519566	-0.008499
Ν	0.800599	0.449547	-0.635734
С	0.093382	-0.681196	-0.816313
Н	0.580766	-1.547484	-1.244898
С	-1.926169	0.409468	0.17078
С	-1.298357	-0.744638	-0.402141
С	-2.078519	-1.873724	-0.533474
Н	-1.642764	-2.772776	-0.961772
С	-3.289271	0.374636	0.569224
Н	-3.705699	1.282906	0.992237
С	-4.066613	-0.796218	0.417131
Н	-5.106109	-0.807067	0.724427
С	-3.46683	-1.913436	-0.128122
Н	-4.021877	-2.835729	-0.264161
С	2.197322	0.491799	-1.050409
Н	2.466289	1.538928	-1.21465
Н	2.310682	-0.041385	-2.003505
С	3.166226	-0.109035	-0.031822
Н	4.197597	0.14271	-0.332447
Н	2.978827	0.319459	0.96271
С	3.764746	-2.153856	0.999176
Н	3.563037	-3.225337	0.931919
Н	3.485075	-1.795243	2.000851
Н	4.841915	-1.982064	0.850378
В	0.223852	1.693828	0.089406

	Table S9. Cartesian	coordinates ((in angstrom)	of 2b in 3	S ₁ state ^[a]
--	---------------------	---------------	---------------	-------------------	-------------------------------------

atom	Х	у	Z	
F	-2.437083	-1.608882	1.219281	
F	-2.586703	-2.529358	-0.887661	
0	-0.491042	-2.353454	0.133342	
0	-2.625066	2.402641	0.180642	
Ν	-1.676663	-0.308263	-0.66551	
С	0.701381	-0.305417	-0.24441	
С	-0.503092	0.32744	-0.689978	
Н	-0.500363	1.343081	-1.063417	
С	1.959029	0.358345	-0.185642	
С	0.651193	-1.69979	0.157663	
С	1.813833	-2.389748	0.548982	
Н	1.705087	-3.433391	0.823422	
С	2.103501	1.752149	-0.513438	
Н	1.226773	2.324548	-0.790812	
С	3.14242	-0.374553	0.213937	
С	3.044771	-1.754187	0.572553	
Н	3.941111	-2.288747	0.86881	
С	-2.87836	0.390956	-1.103583	
Н	-3.615454	-0.362731	-1.392544	
Н	-2.647123	1.002395	-1.985662	
С	4.366219	0.305208	0.233351	
Н	5.261366	-0.239717	0.52089	
С	3.332877	2.394953	-0.477458	
Н	3.406015	3.447382	-0.729109	
С	4.473584	1.66907	-0.106928	
Н	5.445252	2.152043	-0.075661	
С	-3.485905	1.290511	-0.025657	
Н	-4.475815	1.635637	-0.368812	
Н	-3.614867	0.72317	0.906164	
В	-1.832241	-1.73039	-0.038554	
С	-3.01587	3.211131	1.27845	
Н	-3.010298	2.638744	2.217385	
Н	-4.020584	3.63398	1.126702	
Н	-2.293799	4.027651	1.350475	

Table S10. Cartesian coordinates (in	n angstrom)	of 3b	in S ₁ state	e ^[a] .
--------------------------------------	-------------	-------	-------------------------	--------------------

atom	Х	у	Z
F	-1.661298	2.11024	1.014981
F	-1.163203	2.642645	-1.165572
0	0.362405	1.375535	0.088075
0	-3.997166	-1.412821	0.38797
Ν	-1.823029	0.377073	-0.659308
С	0.220245	-0.895095	-0.630022
С	2.366097	0.125163	0.110551
С	0.956312	0.225171	-0.14516
С	3.052129	-1.123707	-0.12476
С	4.449892	-1.21205	0.130995
Н	4.952124	-2.158512	-0.050776
С	0.918265	-2.085909	-0.843337
Н	0.373059	-2.952852	-1.208568
С	5.162154	-0.117315	0.601918
Н	6.226925	-0.194152	0.793885
С	-4.110242	-0.000356	0.275343
С	-1.19318	-0.785876	-0.875562
Н	-1.765301	-1.641674	-1.214247
С	3.110052	1.218762	0.586443
Н	2.60041	2.159311	0.763197
С	4.484201	1.097307	0.827672
Н	5.03387	1.958648	1.195511
С	-3.257496	0.472832	-0.900771
Н	-3.521136	-0.115831	-1.789391
Н	-3.49529	1.520103	-1.106858
С	2.307433	-2.214215	-0.601686
Н	2.795112	-3.166179	-0.788049
С	-4.651574	-1.931658	1.532195
Н	-5.731214	-1.717034	1.509496
Н	-4.22876	-1.51523	2.458604
Н	-4.504291	-3.014126	1.525199
В	-1.084898	1.662231	-0.175719
Н	-3.775928	0.490051	1.200077
Н	-5.161019	0.280812	0.089715

	Table S11.	Cartesian	coordinates	(in	angstrom)	of	4b	in S	1 state	^[a] .
--	------------	-----------	-------------	-----	-----------	----	----	------	---------	------------------

atom	Х	у	Z
F	2.367483	-1.843186	1.246508
F	2.105285	-2.769191	-0.842908
0	0.232075	-1.936099	0.287799
0	3.564133	2.078777	0.129237
Ν	1.973844	-0.369075	-0.628206
С	-0.692582	-1.037694	0.097053
С	-0.363859	0.257148	-0.466106
С	-2.772349	0.849293	-0.281972
С	-3.08142	-0.435332	0.270128
С	-1.40284	1.146948	-0.63214
Н	-1.192614	2.129122	-1.050833
С	0.999828	0.541384	-0.818244
Н	1.265634	1.507935	-1.228717
С	-2.018731	-1.359704	0.448275
Н	-2.201655	-2.34612	0.862575
С	-3.804225	1.769258	-0.462981
Н	-3.581188	2.747281	-0.881101
С	3.345735	-0.03383	-0.991965
Н	3.346452	0.541264	-1.926931
Н	3.882741	-0.969013	-1.173365
С	-4.415327	-0.737117	0.614686
Н	-4.643535	-1.713669	1.032646
С	-5.136277	1.450808	-0.111655
Н	-5.91883	2.187419	-0.263924
С	4.094627	0.760999	0.076451
Н	3.99425	0.264752	1.05183
Н	5.164903	0.795867	-0.189501
С	-5.440367	0.202925	0.424823
Н	-6.461256	-0.045428	0.695643
В	1.715605	-1.750381	0.017314
С	4.115244	2.856072	1.177354
Н	3.644807	3.840922	1.130583
Н	5.203817	2.973282	1.061061
Н	3.912221	2.404848	2.159978