Electronic Supplementary Information (ESI) for

Controlled mechanical properties of poly(ionic liquid)-based hydrophobic ion

gels by the introduction of alumina nanoparticles with different shapes

Yuna Mizutani^a, Takaichi Watanabe^{a*}, Carlos G. Lopez^b, and Tsutomu Ono^a

^a Department of Applied Chemistry, Graduate School of Natural Science, Okayama University, 3-1-1,

Tsushima-naka, Kita-ku, Okayama, 700-8530, JAPAN

^b Department of Materials Science and Engineering, The Pennsylvania State University, University Park,

Pennsylvania 16802, United States

*Email: wata-t@okayama-u.ac.jp, Phone: +81-86-251-8072

1-Butyl-3-methylimidazolium

bis(trifluoromethanesulfonyl)imide

([C₄mim][TFSI])

 $\begin{array}{l} \mbox{1-Ethyl-3-vinylimidazolium}\\ \mbox{bis(trifluoromethanesulfonyl)imide}\\ ([C_2 vim][TFSI]) \end{array}$

1, 4-Bis(3-vinylimidazolium-1-yl) butane bis(trifluoromethanesulfonyl)imide ([(Vim)₂C₄][TFSI]₂)

1, 4-Bis(3-vinylimidazolium-1-yl) butane bromide ([(Vim)₂C₄][TFSI]₂)

2-Hydroxy-4'-(2-hydroxyethoxy)-2methylpropiophenone (Ciba® IRGACURE® 2959)

$$\mathsf{TFSI} = \begin{array}{c} \mathsf{O} & \bigcirc & \mathsf{O} \\ \mathsf{I}_{\mathsf{S}} \mathsf{O} & \mathsf{N}_{\mathsf{S}} \mathsf{O} \\ \mathsf{I}_{\mathsf{S}} \mathsf{O} & \mathsf{N}_{\mathsf{S}} \mathsf{O} \\ \mathsf{I}_{\mathsf{S}} \mathsf{O} & \mathsf{I}_{\mathsf{S}} \mathsf{O} \\ \mathsf{I}_{\mathsf{S} \\ \mathsf{I}_{\mathsf{S}} \mathsf{O} \\ \mathsf{I}_{\mathsf{S}} \mathsf{O} \\ \mathsf{I$$

Figure S1 Chemical structures of reagents used for preparing PIL ion gels.

Scheme S1 Synthesis of [(Vim)₂C₄]Br₂ and [(Vim)₂C₄][TFSI]₂

Figure S2 ¹H NMR spectra of (a) $[(Vim)_2C_4]Br_2$ and (b) $[(Vim)_2C_4][TFSI]_2$. (Solvent: DMSO- d_6).

IL [C₄mim][TFSI]	Total EA	Alumina			
[g]	[mL]	[g]	[vol%]*1		
3.5	1.2	0.12	0.85		
3.5	1.2	0.24	1.7		
3.5	1.2	0.36	2.5		

*1 Alumina [vol%] is a concentration for the whole solution.

Table S2 Amount of reagent used for rod-shaped alumina/[C4mim][TFSI]/EA dispersion.

IL	EA dispersed	Evaporated EA	Addad E A	Total EA	Alumina		
[C ₄ mim][TFSI]	alumina*1	Evaporated EA	Auto EA	TOTALEA	Aluinna		
[g]	[g]	[mL]	[mL]	[mL]	[g]	[vol%]*2	
3.5	1.2	0.66	0.59	1.2	0.12	0.85	
3.5	2.4	1.8	0.57	1.2	0.24	1.7	
3.5	3.6	2.7	0.26	1.2	0.36	2.5	

*1 Alumina concentration in EA dispersed alumina is 10 wt%.

*² Alumina [vol%] is a concentration for the whole solution.

Monomer	Cross ag	-linking ent*1	Initiator* ²	IL	Total	Alumina* ³		
[C ₂ vim][TFSI]	[(Vim) ₂	C ₄][TFSI] ₂	Irgacure2959	[C ₄ mim][TFSI]	EA			
[g]	[g]	[mol%]	[g]	[g]	[mL]	Shape	[g]	[wt%]
3.0	0.021	0.35	0.0016	3.5	1.2	-	0	0
3.0	0.042	0.70	0.0016	3.5	1.2	-	0	0
3.0	0.060	1.0	0.0016	3.5	1.2	-	0	0
3.0	0.021	0.35	0.0016	3.5	1.2	Spherical	0.24	8.0
3.0	0.042	0.70	0.0016	3.5	1.2	Spherical	0.24	8.0
3.0	0.060	1.0	0.0016	3.5	1.2	Spherical	0.24	8.0
3.0	0.021	0.35	0.0016	3.5	1.2	Rod-shaped	0.24	8.0
3.0	0.042	0.70	0.0016	3.5	1.2	Rod-shaped	0.24	8.0
3.0	0.060	1.0	0.0016	3.5	1.2	Rod-shaped	0.24	8.0

Table S3 Amount of reagent used for PIL SN ion gels and spherical or rod-shaped alumina/PIL DN ion gels with different crosslinker concentrations.

*1 Cross-linking agent [mol%] is monomer basis.

*² Initiator is 0.1 mol% on monomer basis.

*³ Alumina [wt%] is PIL network (monomer + cross-linking agent + initiator) basis.

Monomer	Cross-linking agent*1	Initiator* ²	IL	Total	Alun	nina* ³
[C ₂ vim][TFSI]	[(Vim) ₂ C ₄][TFSI] ₂	Irgacure2959	[C ₄ mim][TFSI]	EA		
[g]	[g]	[g]	[g]	[mL]	[g]	[wt%]
3.0	0.021	0.0016	3.5	1.2	0	0
3.0	0.021	0.0016	3.5	1.2	0.12	4.0
3.0	0.021	0.0016	3.5	1.2	0.18	6.0
3.0	0.021	0.0016	3.5	1.2	0.24	8.0
3.0	0.021	0.0016	3.5	1.2	0.30	10
3.0	0.021	0.0016	3.5	1.2	0.36	12
3.0	0.021	0.0016	3.5	1.2	0.42	14

Table S4 Amount of reagent used for spherical alumina/PIL DN ion gels with different alumina concentrations.

*1 Cross-linking agent is 0.35 mol% on monomer basis.

*² Initiator is 0.1 mol% on monomer basis.

*³ Alumina [wt%] is PIL network (monomer + cross-linking agent + initiator) basis.

Table S5 Amount of reagent used for rod-shaped alumina/PIL DN ion gels with different alumina concentrations.

Monomer	Cross-linking agent*1	Initiator* ²	IL	EA dispersed	Total	Alur	nina*4
[C ₂ vim][TFSI]	[(Vim) ₂ C ₄][TFSI] ₂	Irgacure2959	[C ₄ mim][TFSI]	alumina*3	EA		
[g]	[g]	[g]	[g]	[g]	[mL]	[g]	[wt%]
3.0	0.021	0.0016	3.5	1.2	1.2	0.12	4.0
3.0	0.021	0.0016	3.5	1.8	1.2	0.18	6.0
3.0	0.021	0.0016	3.5	2.4	1.2	0.24	8.0
3.0	0.021	0.0016	3.5	3.0	1.2	0.30	10
3.0	0.021	0.0016	3.5	3.6	1.2	0.36	12
3.0	0.021	0.0016	3.5	4.2	1.2	0.42	14

*1 Cross-linking agent is 0.35 mol% on monomer basis.

*² Initiator is 0.1 mol% on monomer basis.

*³ Alumina concentration in EA dispersed alumina is 10 wt%.

*4 Alumina [wt%] is PIL network (monomer + cross-linking agent + initiator) basis.

Figure S3 Values of the low frequency plateau of the storage modulus (G'_P) at versus the volume concentration of alumina in alumina/[C₄mim][TFSI]/EA dispersion (strain = 0.1%, frequency = 1 Hz).

Scheme S2 Schematic illustrations of alumina dispersed in [C₄mim][TFSI]/EA solution.

Figure S4 Stress–strain curves of SN ion gels, spherical and rod-shaped alumina/PIL DN ion gels with different crosslinker concentrations. The alumina concentration was fixed at 8 wt% relative to the PIL network.

Figure S5 Mechanical properties of SN ion gels, spherical, and rod-shaped alumina/PIL DN ion gels with different crosslinker concentrations. The alumina concentration was fixed at 8 wt% relative to the PIL network.

Figure S6 Oscillatory shear temperature-sweep viscoelasticity measurements of (a) PIL SN, (b) spherical alumina/PIL DN, and (c) rod-shaped alumina/PIL DN ion gels.

Figure S7 Ionic conductivity (σ) of PIL DN ion gels with different shapes of alumina and PIL SN ion gel.