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1 Solving for the Streamfunction

Here we develop the equation for the Fourier components of ψ denoted by Bn(r) from the flow
equation given in the main text, and solve it. The right-hand-side is given by
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where we used f0 = f0(x̂ cosφ + ŷ sinφ) = Re
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. Plugging in the Fourier sums, the
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the resulting equation is given by
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As mentioned in the main text, where we ignore the Re operator in Eq. (1.1) because the solution
is now given by the real part of ψ. To solve this equation, one must first solve the homogeneous
equation Ô2

nBn(r) = 0. This is an Euler equation, whose solutions are always given by monoms.
Here, after plugin in Bn = rm we get m = ±n, 2± n. Thus, the solution to eq. (1.2) is given by:
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as long as n ̸= 0,±1 which will be resolved later. The condition on the coefficients xn, yn, zn, wn are
given by the behavior at r = R. B and B′ must be continuous at r = R, because their discontinuity
would result in higher derivatives of δ(r − R) in the equation. To obtain discontinuity constraints
on B′′ and B′′′ we first integrate over the equation from R− ϵ to R+ ϵ and get one condition, and
second we multiply both sides by (r − R) and integrate over the same interval, getting the second
condition

rB′′
n(r)|

R+ϵ
R−ϵ = iηCn−1, r

2B′′′
n (r)

∣∣R+ϵ

R−ϵ
= −iηCn−1(n+ 1). (1.4)

After plugging in eq. (1.3), we get equations for the coefficients:
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with the solution zn = 1
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)
iηCn−1R,wn = 1

4(1−|n|)Θ(n)iηCn−1R, where Θ is the
step function. When n = −1 the solution can be gained from a limit in n, since wn = 0 for
negative n. As mentioned in the main text, we don’t concern ourselves with the case n = 1,
and so n = 0 is the only special case. Its homogeneous solutions have a degeneracy, and so the
general homogeneous solution is given as a linear combination of 1, r2, ln r, r2 ln r. Applying the
same continuity conditions gives the solution in the main text, where a global constant is ignored.

2 Constraints on the Force Distribution

As mentioned in the main text, limiting the force distribution to a circle and to a constant direction
does not constrain the solution of the flow given by the series solution. The coefficients in the series
solution are given by:
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(−1)n

n!

∫
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fjri1 . . . rindA (2.1)

where S is the region the force is applied. The series solution is given by a sum of the contraction
between Dn+1 and ∇nG, in the from Dji1···in∂i1 · · · ∂inGjk. Now, we will show that the possible
leading terms in a solution are independent of S in most cases, and indeed independent in our case,
a circle. Because the permutation of ip, iq doesn’t change the component of either tensor, D and
∇nG, the contraction is of the form:
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where in the first line all ip = 1, in the second line a single index is equal to 2 and so on. We now
denote Diα the components of Dn with α being the amount of ip = 1. Since the derivative of the
green function does not depend on S, to show the result space of Eq. 2.2 does not depend on S,
it is enough to show that the possible space of Diα does not depend on S (not a necessary but a
sufficient condition). The components Diα are defined as

Diα =
(−1)n

n!

∫
S

fix
αyn−αdA = ⟨fi, bα⟩S , (2.3)

where ⟨·, ·⟩S is the standard inner product for function vector spaces, defined over S, and bα =
(−1)n

n! xαyn−α. First assume the direction of the force is fixed, say f2 = 0. As long as B = {bα|α =
1 · · ·n} are linearly independent under S, for every Dn there exists f1 ∈ spanB such that Eq. (2.3)
is satisfied. In particular, it is given by f1 =

∑
αD1αb

∗
α, where b∗α are the dual basis of B. In

particular, when S is the unit circle, bα = cosα θ sinn−α θ are linearly independent. Therefore, the
possibilities of Dn are not limited by the choice that S is the unit circle, and therefore, the result of
the series solution is not constrained by this choice. An example where the choice of S does matter
is when B is linearly dependent, for instance, if S is a section of the line y = x.
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However, the orientation of the force does matter. The solutions for the force that give a specific
Diα is fi =

∑
Diαb

∗
α. Because this force does not have a constant direction (in general), it is not

possible to use the argument above here.

However, a solution for a general force distribution is given by the sum of two familiar solutions
— one considering only the x-component of the force, and second only with the y-component.
Therefore, the most general force distribution is given as a sum of the same terms discussed in the
main text (ψnm in Sec. IIIB), just with different coefficients. As a result, the discussion on the
dynamics in the main text applies to any force distribution. An example is given in the following
section.

3 Constructing Multipoles with Point Forces

Here we highlight how to construct force distributions using point forces only, such that a specific
multipole can be dominant. As mentioned in the main text, the term r−n (n > 0) couples to the
harmonics ±n, n+2 in the streamfunction. These harmonics couple to the harmonics ±n− 1, n+1
of the force distribution. Therefore if the lowest (positive) harmonic in a force distribution is n+1
(which is accompanied by −n− 1), then r−n will be the leading term in the stream function.

ψ =
Rn+1

4rn
Re

{
− iηCn+1

n+ 1
ei(n+2)θ +

iηC−n−1

n(n+ 1)
e−inθ

}
, (3.1)

where C−n−1 = C∗
n+1 because the force distribution is real. In order to accomplish Eq. (3.1) with

point forces, a force distribution is given by

F (θ) =

2n+1∑
k=0

(−1)kδ

(
θ − θ0 +

πk

n+ 1

)
. (3.2)

Intuitively, this function has a period of 2π/(n+1) and so its smallest harmonic must be n+1, and
one can verify that using the Fourier expansion of the delta function, as well as the fact that the
roots of f(z) = 1−z+z2−· · ·−z2n+1 are all the 2n+2 roots of unity except −1. This distribution
is used in the main text in Sec. IIIA with n = 2.

As mentioned in the main text, for n = 2 this distribution creates both second and forth harmonics in
ψ. As mentioned earlier, using a force distribution with a varying direction, it is possible to achieve
more varied linear combination of the terms. For example, we can sum two force distributions, each
in a constant direction, in order to isolate only one of the harmonics. The distribution in Eq. (3.2)
with n = 2 gives (as noted in the main text with θ0 = 0, f0 = f0x̂, C3 = 3

π )

ψoct =
R3

4πr2
f0

(
sin 4θ +

1

2
sin 2θ

)
. (3.3)

Now, to isolate only the forth harmonic, we rotate the force distribution (and f0) by π/2, creating
a distribution with f0||ŷ. These two distributions can be summed to create a distribution with a
varying force direction. Summing Eq. (3.3) with itself after the transformation θ → θ + π

2 gives

ψ =
R3

2πr2
f0 sin 4θ. (3.4)

Using this decomposition, any term we have mentioned ψnm can be dominant.
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Figure 1: (a) The velocity field created by the stream function ψ = ( R2

3r2 − R4

4r4 ) sin(4θ) +
R2

2r2 sin 2θ.
The red circle marks the particle. The green circle has twice its radius, noting the closest distance
another particle can approach before steric interactions take effect. The red crosses mark the
extremum points. (b) The final state of a simulation of particles with this stream function. The
particles clearly form lines tilted at the angles of the extrema. In addition, a few particles collide
and form diamonds, similar to the clusters presented in the main text. It is possible that at even
longer times, all the particles will form a single line.

4 Stream Functions that have Extrema

As mentioned in the main text, a simple example of a stream function with minima and maxima
is given by a squirmer with ψ = (R

2

r2 − R4

r4 ) sin(4θ), which has extrema at r =
√
2R and θ =

π
8 ,

3π
8 · · · 15π

8 . In close range, the particles seem to exhibit mostly chaotic dynamics, with weak
stability around the stream function’s extrema.

Another examples is given by the stream function ψ = ( R2

3r2 −
R4

4r4 ) sin(4θ)+
R2

2r2 sin 2θ, generated by
a particle with only a third harmonic in its force distribution, but with a varying force direction.
Its velocity field is displayed in Fig.1. In a two-particle interaction, it is clear that most paths that
d takes lead to the y-axis, and very few paths (that begin very close the the particle) result in
collision and static stability. Once d reaches the y-axis, small perturbations will change its paths
into orbits around the extrema points. Thus, particles are likely to be stable around the extrema
in multi-particle interactions.

Indeed, simulating a multi-particle interaction, in a similar manner to the main text, shows dy-
namical stability in the formation of rods, angled according to the angle of the extrema, at ≈ ±9◦

measured from the y-axis. These structures, while relatively stable, are still much easier to change
than the structures created by attraction of two particles at their boundary. In fact, while the rods
can scatter and destroy each other, the rare crystallizations in this simulation remain uninterrupted.

This examples show that when extrema are present and crystallization is not forced, the dynamics
can be very ordered or very chaotic, and a closer look is needed to understand close-range dynamics
in general.
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