Supplementary Information

Competition among physical, chemical, and hybrid gelation mechanisms in biopolymers

Ricky F. López-Santiago,¹ Jorge Delgado,² Rolando Castillo^{1*}

¹Instituto de Física, Universidad Nacional Autónoma de México, P.O. Box 20-364, 01000,

Mexico City, México.

² División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato,

León, Guanajuato, México.

^{*} To whom correspondence should be addressed: E-mail: *rolandoc@fisica.unam.mx*

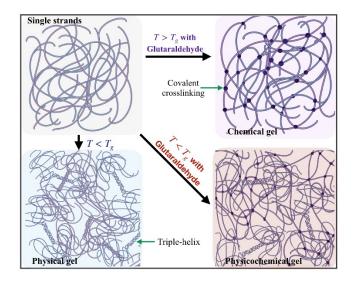
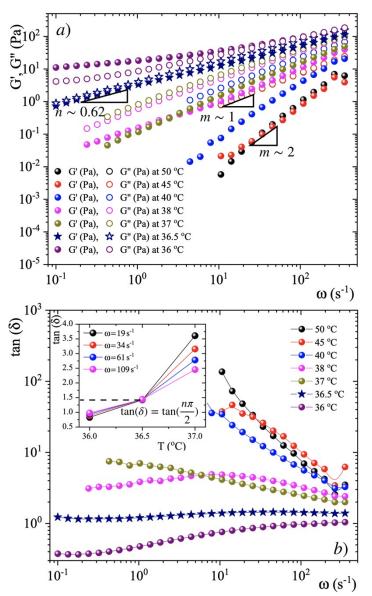
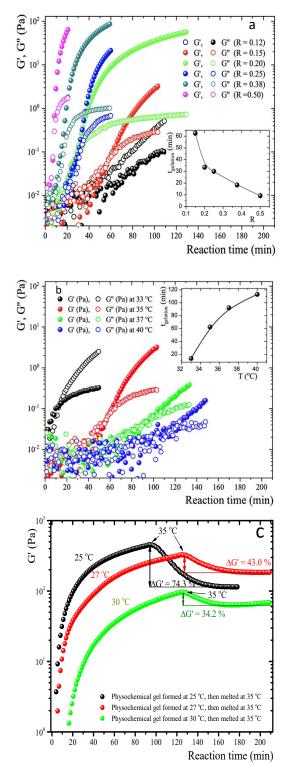




Figure SI1. Cartoon with three gelatin types: Physical gel, chemical, and physicochemical gels with glutaraldehyde as the crosslinking agent. T_g is the gelation temperature.

Estimation of gelation temperature for physical gels. An example of how T_g is obtained for gelatin solution at C = 16 Wt % is presented in Fig. SI2a. For temperatures $\ge 40 °C$, $G'(\omega)$ is proportional to ω^2 and $G''(\omega)$ to ω over a significant frequency domain, a behavior characteristic of polymer solutions.^{1,2} As the temperature is lowered, both $G'(\omega)$ and $G''(\omega)$ get close and parallel, and eventually, when the temperature is equal to $T_g = 36.5 °C$, both moduli are almost the same in almost four orders of magnitude of the frequency. A *log-log* plot of $G'(\omega)$ or $G''(\omega)$ vs. ω forms straight lines with the same slope; the system has reached the critical gel. For $T < T_g$, the viscoelastic behavior is solid-like. Also, at the gel point, *tan* (δ) is independent of frequency, $tan (\delta) = tan (n\pi/2)$, as seen in the inset of Fig. SI2b for 36.5 °C where the *n* value of Chambon & Winter criteria can be obtained, as well as the of stiffness, *S*. In this case, n = 0.62, which is equal to the results reported by Peyrelasse *et al.*² for a concentration range between 0.17 and 0.40 g cm⁻³.

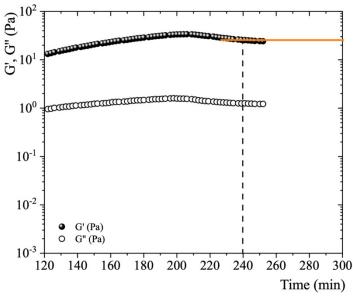
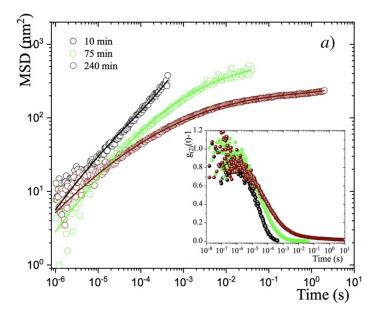
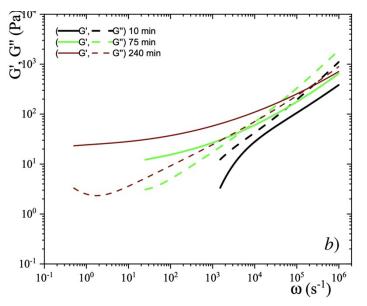
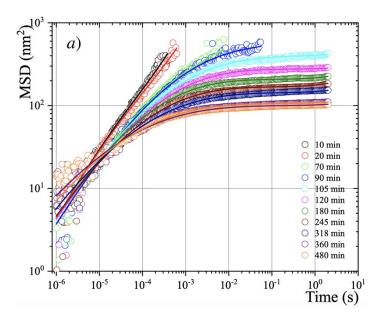


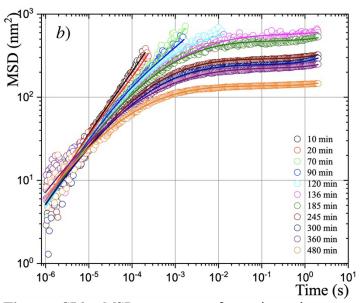
Figure SI2. a) Linear viscoelastic spectra (SAOS protocol) at different temperatures for a gelatin solution (*16 Wt %*) to obtain a physical gel. b) *tan* (δ) *vs*. ω at different temperatures; inset *tan* (δ) as a function of the temperature for different frequencies.




Figure SI3. a) Isothermal time sweep curves for a gelatin solution under chemical gelation at C =5 *Wt* % with different *R* values at 35 °C. Experiments were performed at $\omega = 0.5 \text{ s}^{-1}$ and a strain of $\gamma = 0.8$ %. Insert: Gelation time as a function of R. b) Isothermal time sweep curves for a gelatin solution under chemical gelation at different temperatures with C = 5 *Wt* % and R = 0.15. Insert: Gelation time as a function of the temperature. c) Isothermal time

sweep curves for a gelatin solution under hybrid gelation (5 *Wt* % and *R* = 0.15). The hybrid gel was formed at three different temperatures $\leq T_g$, and subsequently, the gel was melted to destroy the triple helices melted at 35 °C (indicated by an arrow), showing the remaining G' due to the chemical scaffold. As the temperature of hybrid gel formation is lower than T_g , the $\Delta G'$ is larger, showing a greater quantity of triple helices than at temperatures closer to T_g .




Figure SI4. Isothermal sweep curves for physical gelatin gels with 5 *wt* % at T = 29 °C. Experiments were performed at $\omega = 0.5 \text{ s}^{-1}$ and strain of $\gamma = 0.8$ %.

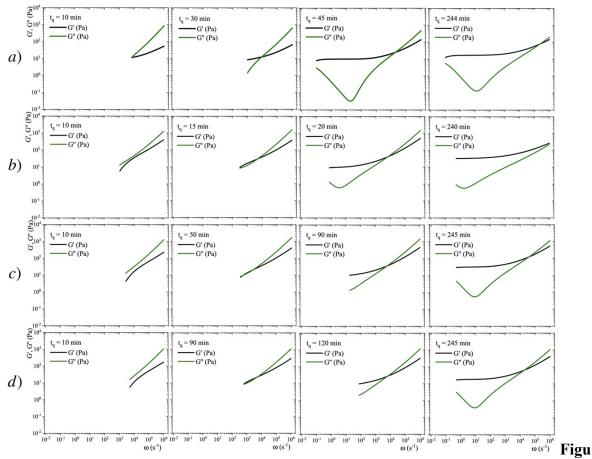


Figure SI5. a) *MSD vs. time* for polystyrene microspheres (*dia. 500 nm* and *vol. fraction* 0.025) embedded in a 5 *Wt* % gelatin solution three times after quenching to 25 °C. 10 min, 75 min, and 240 min. Open circles correspond to experimental MSD data, and the continuous lines correspond to best fitting using the Bellour *et al.* model. ³ Inset: Intensity correlation functions that produced curves in (a). b) Viscoelastic spectra for different times after quenching temperature (10 min, 75 min, and 240 min) through the generalized Stokes-Einstein relationship ^{4,5} using the MSD adjusted by Bellour *et al.* model. ³

Figure SI6. *MSD vs. time* for microspheres embedded in gelatin solutions. a) Physicochemical gel formation for C = 5 Wt % (*dia. 500 nm* and *vol. fraction 0.025*) after adding glutaraldehyde (R = 0.15) and simultaneously quenching to 27 °C. b) Physicochemical gel formation for C = 5 Wt % (*dia. 500 nm* and *vol. fraction 0.025*) after adding glutaraldehyde (R = 0.15) and simultaneously quenching to 30 °C. Open circles correspond to experimental MSDs data, and continuous lines correspond to best fitting using the Bellour *et al.* model. ³

re SI7. Time evolution of viscoelastic spectra for gelatin solution. a) Chemical gel formation for C = 3 Wt % at different t_q after adding glutaraldehyde (R = 0.25). Physicochemical gel formation for C = 5 Wt % at different t_q after adding glutaraldehyde (R = 0.15) and simultaneously quenching: b) 25 °C, c) 27 °C, and c) 30 °C.

References

- 1 M. Doi, S. F. Edwards and S. F. Edwards, *The Theory of Polymer Dynamics*, Oxford University Press, 1988, vol. 73.
- 2 J. Peyrelasse, M. Lamarque, J. P. Habas and N. El Bounia, *Phys Rev E*, 1996, **53**, 6126–6133.
- 3 M. Bellour, M. Skouri, J.-P. Munch and P. Hébraud, *The European Physical Journal E*, 2002, **8**, 431–436.
- 4 T. G. Mason and D. A. Weitz, *Phys Rev Lett*, 1995, 74, 1250–1253.
- 5 A. Tavera-Vázquez, N. Rincón-Londoño, R. F. López-Santiago and R. Castillo, *Journal of Physics: Condensed Matter*, 2022, **34**, 034003.