Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Bio-Inspired Silkworm 3D Cocoon-like Hierarchical Self-assembled Structure

from π-conjugated Natural Aromatic Amino Acids

Smriti Mukherjee, ^{1,2} Samala Murali Mohan Reddy, ¹ Ganesh Shanmugam^{*1, 2}

¹Organic & Bioorganic Chemistry Laboratory

Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, 600020, India.

²Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.

Contents	Page No.
Figure S1. FE-SEM images of Fmoc-F and Fmoc-Y cocoon-like structures	2
Figure S2. Excitation spectra of Fmoc-F and Fmoc-Y fibrils	3
Figure S3. ECD spectra of Fmoc-F and Fmoc-Y fibrils	4
Figure S4. Vibrational absorption and VCD spectra of Fmoc-F and Fmoc-Y	5
fibrils	
Figure S5. Time-lapse optical microscopic images (40X) of Fmoc-F fibrils	6
forming during drying	
Figure S6. Time-lapse optical microscopic images (40X) of Fmoc-Y fibrils	7
forming during drying	
Figure S7. Water contact angle of the Fmoc-F and Fmoc-Y fibrils-coated	8
glass surface	

Table of contents

Figure S1. Additional FE-SEM images of (A) Fmoc-F and (B) Fmoc-Y cocoon-like structures formed on drying at 30 °C and 27% RH. The cocoon-like structures are composed of entangled fibrils.

Figure S2. Excitation spectra of (A) Fmoc-F and (B) Fmoc-Y fibrils at two emission wavelengths.

Figure S3. ECD spectra of (A) Fmoc-F and (B) Fmoc-Y fibrils, formed on the quartz slide, at different angles (0°, 90° and 180°) with respect to the light beam axis.

Figure S4. Vibrational absorption (bottom panel) and VCD (top panel) spectra of (A) Fmoc-F and (B) Fmoc-Y fibrils (supported on CaF_2 plate) obtained from different rotations (0° , 45° , 90° and 180°) around the light beam axis.

Figure S5. Time-lapse optical microscopic images (40X) of Fmoc-F fibrils forming during drying from a 2 mg/mL solution in ethanol (Scale bar = 10μ m). The rate of evaporation is slower here than in confocal laser scanning microscopy since the optical microscopy experiment was conducted in a closed environment with less air circulation. It is note that the cocoon-like structures of diameter about 1 μ m could not be visualised using an optical microscope due to its own limitation.

Figure S6. Time-lapse optical microscopic images (40X) of Fmoc-Y fibrils forming during drying from a 2 mg/mL solution in ethanol (Scale bar = 10μ m). The rate of evaporation is slower here than in confocal laser scanning microscopy since the optical microscopy experiment was conducted in a closed environment with less air circulation. Due to the low resolution of optical microscope, the smaller diameter Fmoc-Y fibrils could not be visualized. It is note that the cocoon-like structures of diameter about 1 μ m could not be visualised using an optical microscope due to its own limitation.

Figure S7. Change in water contact angle on Fmoc-F and Fmoc-Y fibrils-coated glass surfaces as a function of time, demonstrating that water drops spread quickly on the coated glass surfaces. The left and right water contact angles are highlighted on the images in red.