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S1. Uniform Cartesian networks analysis 

Figure 2 in the main text depicts two networks with uniform node-to-node distances. The network 

depicted in Figure 2A exhibited a shape-preserving morphing behavior. The reciprocal slenderness for the 

responsive PNcG fibers is 0.07 (± 0.01). The maximum deflection of the segments, 𝜓, is 0 𝜇𝑚 in this 

network. The network depicted in Figure 2B exhibited a buckling-governed morphing behavior. The 

reciprocal slenderness for the responsive PNcG fibers in this network is 0.014 (±0.002), and the average 

deflection amplitude  𝜓 is 147 (±27𝜇𝑚), showing the large distribution of values, as expected for the 

ensemble of buckling segments. The reciprocal slenderness and deflection for both systems well-agrees 

with the analysis performed on the systems with an ununiform distribution of node-to-node distances. 

 

S2. Flory-Rehner equation 

The Young modulus of the PNcG polymer cannot be determined directly; hence, it was deduced indirectly 

from the swelling ratio of the fibers using the Flory-Rehner equation. For a typical swollen polymer 

network, the fraction of the polymer in the swollen gel, 𝜙, defined as 𝜙 =
𝑉𝑢𝑠

𝑉𝑠
, where 𝑉𝑢𝑠  is the unswollen 

volume of the gel and 𝑉𝑠  is the swollen volume of the gel. The Young modulus can be extracted from the 

Flory-Renher model:1  

𝐸 =
3𝑘𝐵𝑇

𝛼3𝑁𝑔𝑒𝑙
𝜙3, (S1) 

where 𝑘𝐵  is Boltzmann constant, 𝑇 is the temperature that is set to be the room temperature, 𝛼 = 6.7Å 

is the monomer length, and 𝑁𝑔𝑒𝑙  is the number of monomers between two crosslinkers, which is calculated 

to be 50.2. Using this equation, an estimate for 𝐸 was established for every fiber that was described in the 

article. 

 

S3. Using phase transition formalism for describing the buckling of a beam 

 To develop the phase transition description for the buckling of segments, we followed the 

formalism suggested by Salvel'ev and Nori for considering beam buckling under an external force as a 

modified Landau theory problem. The general expression for the mechanical energy, 𝐹, of a beam with a 

Young modulus 𝐸, radius 𝑟, and length 𝐿 , as a function of an applied stress 𝜎, is given in Eq. 2 in the main 

text.3  The beam contour depends on the boundary conditions of the system: in the case of a pinned beam 

(𝑦 =0 and 𝑦’’=0 at 𝑙 =0 and 𝑙 = 𝐿) the contour can be expressed as 𝑦 = 𝜓𝑠𝑖𝑛 (
𝑛𝜋𝑙

𝐿
) , while in the case of a 

clamped beam (𝑦 =0 and 𝑦’=0 at 𝑙 =0 and 𝑙 = 𝐿), the contour is described as 𝑦 = 𝜓 (1 − cos (
2𝑛𝜋𝑙

𝐿
)) .in 

both cases, the amplitude, 𝜓, indicates the extent of buckling, and hence can be regarded as an order 

parameter for the buckling. From the solution of the critical buckling, the critical stress at which buckling 

occurs is given by: 

𝜎𝑐(𝑛) =
𝑎2𝑛2𝐸𝜋2𝑟2

4𝐿2 , (S2) 

where 𝑎 is a column effective length factor; 𝑎 = 1 in the case of pinned ends, and 𝑎 = 2 for clamped ends, 

𝑛 is the mode order, 𝐸 is the young modulus, 𝑟 is the beam’s radius, and 𝐿 is the beam’s length.  

 

Substituting the equations of the beam contour into Eq. 2 in the main text, developing the expressions as 

a Taylor series of 𝜓, and integrating, one obtains the following expression for the energy as a function of 

the stress: 

𝐹 =
𝑎2𝜋3𝑛2𝑟2

4𝐿
(𝜎𝑐(𝑛) − 𝜎)𝜓2 +

𝑎4𝜋5𝑛4𝑟2

64𝐿3
(4𝜎𝑐(𝑛) − 3𝜎)𝜓4 + 𝑂(𝜓6), (S3) 

which, by substituting 𝜎𝑐(𝑛) from Eq. 1 yields Eq. 4. To find the minimum of the energy with respect to 𝜓, 

we differentiate Eq. S3 and set to 0. As we focus on the region of order transition (𝜓 → 0), the higher terms 

can be disregarded, obtaining: 



3S 
 

𝑑𝐹

𝑑𝜓
= 2

𝑎2𝜋3𝑛2𝑟2

4𝐿
(𝜎𝑐(𝑛) − 𝜎)𝜓 + 4

𝑎4𝜋5𝑛4𝑟2

64𝐿3
(4𝜎𝑐(𝑛) − 3𝜎)𝜓3 = 0. (S4) 

From this, we get the deflection that minimizes the energy: 

  

𝜓𝑚 = √−
(𝜎𝑐(𝑛) − 𝜎)

𝑎2𝜋2𝑛2

8𝐿2 (4𝜎𝑐(𝑛) − 3𝜎)
, (S5) 

and this is indeed a minimum, because 
𝑑2𝐹

𝑑𝜓2
(𝜓𝑚) > 0.  

In proximity to 𝜎𝑐  (𝜎 → 𝜎𝑐), the expression further simplifies to: 

𝜓𝑚 = 𝐿√−
8(𝜎𝑐(𝑛) − 𝜎)

𝑎2𝜋2𝑛2𝜎𝑐(𝑛)
, (S6) 

The derivation above is general for a single beam and shows that the beam buckling indeed follows the 

extended Landau theory, with the stress (or force) acting as equivalent to the temperature in 

thermodynamic systems. 

While Eqs. S4-S6 usually focus on a single beam with a known and constant 𝜎𝑐  and a varying 

external stress. They are also used for describing a system with varying critical stress that is under constant 

external stress, 𝜎∗. For example, in the ununiform networks described in the article, the same stress is 

imposed on segments of different critical stresses and affects their buckling extent.    

The critical stress depends entirely on the dimensions and mechanical properties of the 

segments, the Young modulus 𝐸, the segment’s radius, 𝑟, and its length, 𝐿, as shown in Eq. 1. Hence, if 

two of these parameters are constant for all the segments, a Landau-like expression can be developed for 

the third parameter. For example, for segments along a single fiber, both the Young modulus and the 

radius are constant, while the segment length can change. Under these assumptions, Eq. S5 can be written 

in terms of the single-segment properties:  

𝜓𝑚 = √−
(

1
4

𝑎2𝑛2𝜋2𝐸 (
𝑟
𝐿

)
2

− 𝜎∗)

𝑎2𝜋2𝑛2

8𝐿2 (4 ∙
1
4

𝑎2𝑛2𝜋2𝐸 (
𝑟
𝐿

)
2

− 3𝜎∗)
, (S7) 

taking into account the radius and Young modulus, according to Eq.1, there is a critical length,  𝐿∗, above 

which the segment will buckle under the applied stress. Substituting this into Eq. S7 yields 

𝜓𝑚 = √−
(

1
𝐿2 −

1

𝐿∗2)

𝑎2𝜋2𝑛2

8𝐿2 (
4
𝐿2 −

3

𝐿∗2)
. (S8) 

 

If we examine the system very close to this critical length (𝐿 → 𝐿∗) then: 

𝜓𝑚 = √−
(

1
𝐿

+
1
𝐿∗) (

1
𝐿

−
1
𝐿∗)

𝑎2𝜋2𝑛2

8𝐿2 (
4
𝐿2 −

3

𝐿∗2)
≈

√16𝐿∗3 (
1
𝐿∗ −

1
𝐿

)

𝑎2𝜋2𝑛2  (S9) 

where 𝐿−1 acts as the effective temperature. 

When examining a single network, all the responsive fibers are made of the same polymer (i.e., they have 

the same Young modulus), but in this case, both the radius and the length of the segments can change 

along the network. In this case, the critical stress yields a critical slenderness ratio, 𝑆∗̅̅ ̅ = √
4𝜎∗

𝑎2𝑛2𝐸𝜋2 , and 

Eq. S3 can be expressed as a function of the reciprocal slenderness, 𝑆̅, yielding Eq. 5 in the main text. 

Deriving the minimum of the energy with respect to 𝜓 (similar to the derivation shown above) yields: 
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𝜓𝑚 ≈ 𝐿√
16(𝑆∗̅̅ ̅ − 𝑆̅)

𝑎2𝜋2𝑛2𝑆∗̅̅ ̅
, (S10) 

 

      

whereby multiplying by 
𝑆

𝑆
= 1 can be revised as: 

𝜓𝑚 ≈ 𝑟√
16(𝑆∗̅̅ ̅ − 𝑆̅)

𝑎2𝜋2𝑛2 (𝑆∗̅̅ ̅3
)

, (S11) 

leading to Eq. 6 in the main text.  

Eqs. S8 and S9 indicate that for all segments, the order parameter 𝜓 should exhibit the same 

square root dependence on the governing parameter 𝑆̅, typical of Landau's theory. However, the 

proportionality coefficient will be different for each segment. Dividing Eq. S8 by 𝐿 and Eq. S9 by 𝑟 leads to 

a unified expression, which is similar for all the segments in the networks as long as 𝐸 is constant, as 

portrayed in Figure 4C in the main text. 
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S4. Shearing within buckling-governed morphing regimes

 

 
 

 

 

Figure S1. Node-to-node path of two fibers portrayed in Figure 3 in the main text, showing the shearing of the 
network as the swelling progresses. The nodes along the fibers are numbered from left to right. Major shearing 
occurred in nodes 6, 9, 10, 12, and 13. 
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