Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2024

SI

A co-assembly process for a high strength and injectable dual

network gel with sustained doxorubicin release performance

Chengcheng Zhao^{1,2}, Yanyao Wang², Lin Wang³, Shuwen Lou⁴, Bofang Shi ², Yongfang Rao^{*2}, Mingtao Li², Wei Yan ², Honghui Yang ^{*1}

1. Xi'an Key Laboratory of Sustainable Energy Materials Chemistry; School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China;

2. State Key Laboratory of Multiphase Flow in Power Engineering; Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China;

3. First Affiliate Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710049, China;

4. Hangzhou Entel Foreign Language School, Hangzhou 311122, China.

* Corresponding authors: yfrao@xjtu.edu.cn (Yongfang Rao); yanghonghui@mail.xjtu.edu.cn (Honghui Yang)

Wavenumber / cm ⁻¹	Vibration modes			
3600	υ(-CONH-)			
3317	υ (-COOH, H-bond)			
3456	υ (-OH, -COOH, H-bond)			
3063	v(Aryl-H)			
1725	υ (-COO-Fmoc, -CONH-(Amide I), -COOH)			
1687	γ(-OH)			
1633	υ _{as} (G-COOH, M-COOH)			
1610	β -sheet, v_{as} (-COO-)			
1538	υ (Fmoc, Bz)			
1450	γ(-CONH-) Amide II			
1432	υ _s (G-COOH, M-COOH)			
1395	υ (-CONH-) Amide III			
1256	v(-OCO-Fmoc)			
1080	υ(-CONH-)			
1024	υ(-COOOC-)			
740	β(Aryl-H)			
563	β(-CH ₂ -)			

Table S1 The collected FTIR peak information of gels

Conformation	Single point energy (SPE) / a.u.	$\Delta E / (\text{kcal/mol})$		
Fmoc-F	-1282.960	\		
ALG	-1446.194	\		
DOX	-1928.674	\		
Fmoc-F·Fmoc-F (1)	-2565.940	-12.613		
Fmoc-F·Fmoc-F (2)	-2565.943	-14.478		
Fmoc-F·H ₂ O·Fmoc-F	-2642.395	-28.964		
Fmoc-F·2H ₂ O·Fmoc-F	-2718.842	-39.275		
Fmoc-F·ALG (1)	-2729.175	-13.217		
Fmoc-F·ALG (2)	-2729.198	-27.684		
ALG·ALG	-2892.429	-25.777		
ALG·Ca·ALG	-3570.168	-157.837		
Fmoc-F·DOX (1)	-3211.668	-21.847		
Fmoc-F·DOX (2)	-3211.669	-22.393		
ALG·DOX (1)	-3374.919	-31.661		
ALG·DOX (2)	-3374.906	-24.349		
DOX·DOX (1)	-3857.393	-28.896		
DOX·DOX (2)	-3857.384	-22.750		
Fmoc-F·DOX·ALG (1)	-4657.909	-50.982		
Fmoc-F·DOX·ALG (2)	-4657.912	-53.021		

Table S2 The collected data of ORCA calculation: the geometry optimization at B97-3C level, the single point energy at RI-B97M-V/def2-TZVP level and the binding energy (ΔE).

Figure S1 The network morphology overview of 1stSN

Figure S2 The dependency of DN gel properties on 1stSN/2ndSN ratio: (a) FTIR spectra and (b) rheological parameter's comparison.

The weight ratio of • 1 st SN to 2 nd SN		Strain	3ITT		
	G' / Pa	G" / Pa	Yield strain / %	tanð	Recover ratio within 100 s / %
4/2	18700	2060	21.00	0.110	66.46
3/2	51700	7330	14.75	0.142	91.01
2/2	64400	9960	14.53	0.155	85.63
2/2.4	181000	26200	14.07	0.145	74.87
2/2.8	160000	22700	14.97	0.142	73.01

Table S3 The collected rheological information of SN and DN gels.

Figure S3 The comparison of elastic modulus of gels in this work and other types of gel materials.

Figure S4 The optical pictures of DN-DOX-X gels with different DOX amounts (X=0.05, 0.1 0.5, 1 and 1.5).

Figure S5 The structural change before and after DOX loading: (a) the UV-vis spectra, (b) FTIR

spectra.

		3ITT		
Sample	G'/Pa	G"/Pa	Yield strain / %	Recover ratio / %
DN-DOX-0.05	35600	6420	8.46	84.10
DN-DOX-0.1	57400	7190	14.29	89.60
DN-DOX-0.5	108000	13300	17.68	84.88
DN-DOX-1	60100	8350	16.88	88.53
DN-DOX-1.5	51800	8210	21.45	87.55

Table S4 The collecting rheological data of DN-DOX gels.

Drug delivery efficiency		1 st SN-	2 nd SN-	DN-DOX-x					
		DOX-	DOX-	0.05	0.1	0.5	1	1.5	
		0.05	0.05						
Loading	E_l / %		0.10	0.07	0.12	0.24	1.20	2.22	3.26
capacity	E _e / %		77.06	59.11	96.71	95.48	97.47	90.65	89.77
	Er at 30 min / %		16.57	11.65	2.34	3.35	5.48	11.88	10.00
Releasing	E_r at 24	h / %	/	/	52.01	37.89	30.31	44.71	50.45
profile	t for $E_r > 5$	0% / h	2	2	24	30	36	32	24
	t for $E_r > 90\% / h$		10	10	57	82	144	168	72
	Whole range	а	36.04	35.47	12.28	11.16	9.94	18.40	26.58
		п	0.48	0.41	0.48	0.47	0.46	0.33	0.27
		R^2	0.97	0.90	0.98	0.96	0.95	0.96	0.91
Fitting		a_1			11.46	9.25	8.18	20.11	21.42
result of 0-	0~24h	n_1	\		0.49	0.45	0.41	0.26	0.29
Er on a		R_I^2			0.97	0.96	0.99	0.98	0.96
Rigter-	24~48h 48~End	a_2			6.07	4.29	1.61	5.27	7.88
Peppas model		n_2			0.67	0.74	0.96	0.56	0.62
		R_2^2			0.96	0.97	0.98	0.99	0.90
		a_3			42.60	34.19	23.34	38.25	69.58
		n_2			0.19	0.22	0.28	0.17	0.06
		R_3^2			0.72	0.82	0.97	0.88	0.84

Table S5 The DOX loading efficiency, encapsulation efficiency and releasing in DN-DOX gels.

Table S6 The release kinetics fitting by other models

Sample		Zero-order First-order		Higuchi	
1 st SN-DOX-0.05		y=20.63+9.26x,	y=98.68\vec{p}(1-e^{-0.35x}),	y=33.27\vec{p}x^{1/2}-0.03,	
		R ² =0.83	R ² =0.99	R ² =0.97	
		y=26.51+1.09x,	y=94.44 (1-e ^{-0.36x}),	y=27.72 x ^{1/2} +4.16,	
2 nd SN-DOX-0	0.05	R ² =0.68 R ² =0.99		R ² =0.89	
	0.05	y=21.61+1.09x,	y=103.09 β (1-e ^{-0.03x}),	y=11.33 A x ^{1/2} +0.08,	
DN-DOX-x	0.05	R ² =0.87	R ² =0.97	R ² =0.97	
	0.1	y=24.20+0.77x,	y=102.77 ☎(1-e ^{-0.03x}),	y=9.82 f x ^{1/2} -0.05,	
	0.1	R ² =0.79	R ² =0.98	R ² =0.95	
	0.5	y=24.84+0.53x,	y=98.36 (1-e ^{-0.02x}),	y=8.10 x ^{1/2} +1.17,	
	0.5	$R^2=0.77$	R ² =0.98	R ² =0.94	
	1	y=35.65+0.44x,	y=90.02 β (1-e ^{-0.03x}),	y=6.82 x ^{1/2} +15.17,	
	1	R ² =0.71	R ² =0.87	R ² =0.92	
	15	y=46.32+0.41x,	$y=90.91$ $(1-e^{-0.05x}),$	$y=7.04$ $x^{1/2}+23.33$,	
	1.3	R ² =0.52	R ² =0.91	R ² =0.81	

Figure S6 The comparison of sustained releasing time of gels in this work and other types of gel materials.

Reference:

- Murali DM, Shanmugam G. The aromaticity of the phenyl ring imparts thermal stability to a supramolecular hydrogel obtained from low molecular mass compound. New J Chem, 2019, 43 (31): 12396-12409.
- [2] Gahane AY, Ranjan P, Singh V, et al. Fmoc-phenylalanine displays antibacterial activity against Gram-positive bacteria in gel and solution phases. Soft Matt, 2018, 14 (12): 2234-2244.
- [3] Singh V, Snigdha K, Singh C, et al. Understanding the self-assembly of Fmoc-phenylalanine to hydrogel formation. Soft Matt, 2015, 11 (26): 5353-5364.
- [4] Snigdha K, Singh BK, Mehta AS, et al. Self-assembling N -(9-Fluorenylmethoxycarbonyl)-l-Phenylalanine hydrogel as novel drug carrier. Int J Biol Macromol, 2016, 93: 1639-1646.
- [5] Abraham JN, Joseph S, Trivedi R, et al. Injectable dextran-fluorenylmethoxycarbonyl phenylalanine composite hydrogels with improved mechanical properties. Polym Int, 2021, 70 (2): 222-229.
- [6] Ryan DM, Anderson SB, Nilsson BL. The influence of side-chain halogenation on the selfassembly and hydrogelation of Fmoc-phenylalanine derivatives. Soft Matt, 2010, 6 (14): 3220.
- [7] Ryan DM, Doran TM, Nilsson BL. Stabilizing self-assembled Fmoc-F5-Phe hydrogels by coassembly with PEG-functionalized monomers. Chem Commun (Camb), 2011, 47 (1): 475-477.
- [8] Hashemnejad SM, Huda MM, Rai N, et al. Molecular Insights into Gelation of Di-Fmoc-l-Lysine in Organic Solvent-Water Mixtures. ACS Omega, 2017, 2 (5): 1864-1874.
- [9] Zhang Y, Li S, Ma M, et al. Tuning of gel morphology with supramolecular chirality amplification using a solvent strategy based on an Fmoc-amino acid building block. New J Chem, 2016, 40 (6): 5568-5576.

- [10] Li J, Kuang Y, Shi J, et al. The conjugation of nonsteroidal anti-inflammatory drugs (NSAID) to small peptides for generating multifunctional supramolecular nanofibers/hydrogels. Beilstein J Org Chem, 2013, 9: 908-917.
- [11] Raeburn J, Zamith Cardoso A, Adams DJ. The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chem Soc Rev, 2013, 42 (12): 5143-5156.
- [12] Najafi H, Abolmaali SS, Heidari R, et al. Nitric oxide releasing nanofibrous Fmoc-dipeptide hydrogels for amelioration of renal ischemia/reperfusion injury. J Control Release, 2021, 337: 1-13.
- [13] Howe EJ, Okesola BO, Smith DK. Self-assembled sorbitol-derived supramolecular hydrogels for the controlled encapsulation and release of active pharmaceutical ingredients. Chem Commun (Camb), 2015, 51 (35): 7451-7454.
- [14]Yu A, Hu Y, Ma X, et al. Sequential drug release of co-assembled supramolecular hydrogel as synergistic therapy against Staphylococcus aureus endophthalmitis. Chem Eng J, 2022, 427: 130979.
- [15] Valls A, Isabel Burguete M, Kuret L, et al. Open chain pseudopeptides as hydrogelators with reversible and dynamic responsiveness to pH, temperature and sonication as vehicles for controlled drug delivery. J Mol Liq, 2021, 348: 118051.
- [16] Dadfar SMR, Pourmahdian S, Tehranchi MM, et al. Novel dual-responsive semiinterpenetrating polymer network hydrogels for controlled release of anticancer drugs. J Biomed Mater Res A, 2019, 107 (10): 2327-2339.
- [17] Tao N, Li G, Liu M, et al. Preparation of dual responsive low-molecular-weight hydrogel for long-lasting drug delivery. Tetrahedron, 2017, 73 (22): 3173-3180.
- [18] Mo G, Zhang R, Wang Y, et al. Rheological and optical investigation of the gelation with and without phase separation in PAN/DMSO/H₂O ternary blends. Polymer, 2016, 84: 243-253.
- [19] Appaw C, Gilbert RD, Khan SA, et al. Viscoelastic behavior of cellulose acetate in a mixed solvent system. Biomacromolecules, 2007, 8 (5): 1541-1547.
- [20] Gonzalez MV, Tang Y, Phillips GJ, et al. Doxorubicin eluting beads-2: methods for evaluating drug elution and in-vitro:in-vivo correlation. J Mater Sci Mater Med, 2008, 19 (2): 767-775.
- [21] Mao J, Qiu L, Ge L, et al. Overcoming multidrug resistance by intracellular drug release and inhibiting p-glycoprotein efflux in breast cancer. Biomed Pharmacother, 2021, 134: 111108.
- [22] Maciel D, Figueira P, Xiao S, et al. Redox-responsive alginate nanogels with enhanced anticancer cytotoxicity. Biomacromolecules, 2013, 14 (9): 3140-3146.
- [23] Ma M, Feng Z, Zhao M, et al. Fabrication of macrocyclic organogel utilizing solvent balance and its application in vascular supporting materials. Colloid Surf, 2020, 589: 124432.
- [24] Zhou Q, Li C, Guo J, et al. Self-assembled biocompatible heparin-based supramolecular hydrogel for doxorubicin delivery. Carbohydr Res, 2022, 511: 108464.
- [25] Wang M, Chen M, Niu W, et al. Injectable biodegradation-visual self-healing citrate hydrogel with high tissue penetration for microenvironment-responsive degradation and local tumor therapy. Biomaterials, 2020, 261: 120301.
- [26] Dou XQ, Zhao CL, Mehwish N, et al. Photoresponsive supramolecular hydrogel co-assembled from Fmoc-Phe-OH and 4,4'-azopyridine for controllable dye release. Chinese J Polym Sci, 2019, 37 (5): 437-443.
- [27] Chen J, Tao N, Fang S, et al. Incorporation of Fmoc-Y nanofibers into Ca-alginate hydrogels

for improving their mechanical properties and the controlled release of small molecules. New J Chem, 2018, 42 (12): 9651-9657.

- [28] Shulman LP. Effectiveness of maternal influenza immunization in mothers and infants. yearbook of obstetrics, gynecology and women's health. N Engl J Med, 2009, 359: 115-117.
- [29] Grijalvo S, Puras G, Zárate J, et al. Nioplexes encapsulated in supramolecular hybrid biohydrogels as versatile delivery platforms for nucleic acids. RSC Adv, 2016, 6 (46): 39688-39699.
- [30] Huang R, Qi W, Feng L, et al. Self-assembling peptide–polysaccharide hybrid hydrogel as a potential carrier for drug delivery. Soft Matt, 2011, 7 (13): 6222.
- [31] Gallo E, Diaferia C, Rosa E, et al. Peptide-based hydrogels and nanogels for delivery of doxorubicin. Int J Nanomedicine, 2021, 16: 1617-1630.
- [32] Giuri D, Barbalinardo M, Zanna N, et al. Tuning mechanical properties of pseudopeptide supramolecular hydrogels by graphene doping. Molecules, 2019, 24 (23): 4345.
- [33] Bai J, Liu Y, Jiang X. Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemophotothermal therapy. Biomaterials, 2014, 35 (22): 5805-5813.
- [34] Piras CC, Mahon CS, Smith DK. Self-assembled supramolecular hybrid hydrogel beads loaded with silver nanoparticles for antimicrobial applications. Chem A Europ J, 2020, 26 (38): 8452-8457.
- [35] Patterson AK, Smith DK. Two-component supramolecular hydrogel for controlled drug release. Chem Commun (Camb), 2020, 56 (75): 11046-11049.
- [36] Vieira VMP, Hay LL, Smith DK. Multi-component hybrid hydrogels-understanding the extent of orthogonal assembly and its impact on controlled release. Chem Sci, 2017, 8 (10): 6981-6990.
- [37] Nanda J, Biswas A, Banerjee A. Single amino acid based thixotropic hydrogel formation and pH-dependent morphological change of gel nanofibers. Soft Matt, 2013, 9 (16): 4198.
- [38] Sun JY, Zhao X, Illeperuma WR, et al. Highly stretchable and tough hydrogels. Nature, 2012, 489 (7414): 133-136.
- [39] Chen Q, Zhu L, Chen H, et al. A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties. Adv Func Mater, 2015, 25 (10): 1598-1607.
- [40] Zhang R, Xing R, Jiao T, et al. Carrier-free, chemophotodynamic dual nanodrugs via selfassembly for synergistic antitumor therapy. ACS Appl Mater Interfaces, 2016, 8 (21): 13262-13269.
- [41] Zhao D, Zhao X, Zu Y, et al. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomedicine, 2010, 5: 669-677.
- [42] Yue Y, Liu ZW. Conjugating aldoxorubicin to supramolecular organic frameworks: polymeric prodrugs with enhanced therapeutic efficacy and safety. J Mater Chem B, 2022, 10(22): 4163-4171.
- [43] Gao Y, Chen Y, Ji X, et al. Controlled intracellular release of Doxorubicin in multidrugresistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano, 2011, 5 (12): 9788-9798.
- [44] Ye W, Zhang G, Liu X, et al. Fabrication of polysaccharide-stabilized zein nanoparticles by flash nanoprecipitation for doxorubicin sustained release. 2022, 70: 103183.