Electronic Supplementary Material (ESI) for RSC Sustainability. This journal is © The Royal Society of Chemistry 2023

Supplementary data

Upcycling of spent functional biocarbon adsorbents to catalysts for

conversion of C5/C6 carbohydrates into platform chemicals

Haixin Guo^{a,b*}, Yuto Inoue^b, Yukiya Isoda^b, Tetsuo Honma^c, Richard Lee Smith Jr ^{b*}

^aAgro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No.

31 Fukang Road, Nankai District, Tianjin 300191, China

^bGraduate School of Environmental Studies, Tohoku University, Aramaki Aza Aoba 468-

1, Aoba, Sendai 980-8572, Japan.

^cMaterial and Biological Engineering Course, Department of Industrial System

Engineering, National Institute of Technology (KOSEN), Hachinohe College, 16-1

Uwanotai, Tamonoki-Aza, Hachinohe, 039-1192, Japan

*Corresponding Authors:

* <u>haixin_g@126.com</u> (H.G.);

richard.smith.c6@tohoku.ac.jp (R.L.S.)

Figure S1. XRD patterns of as-prepared functional biocarbons. Black line: HC; Red line: N-HC.

Figure S2. SEM images of as-prepared biocarbon materials (a) HC, (b) N-HC (c) B-HC and (d) BN-HC and (e) Ni-BNS-HC.

Figure S3. SEM-EDX images of as-prepared HC biocarbon materials: (a) SEM image, and corresponding EDX maps of: (b) carbon, (c) oxygen.

Figure S4. SEM-EDX images of as-prepared B-HC biocarbon materials: (a) SEM image and corresponding EDX maps of (b) carbon, (c) oxygen, (d) nitrogen, (e) sulfur.

Figure S5. XPS binding energy shifts of N1s for (a) N-HC, (b) B-HC and (c) BN-HC.

Figure S6. XPS binding energy shifts of C 1s for: (a) HC, (b) N-HTC, (c) B-HC and (d) BN-HC.

Figure S7. XPS binding energy shifts of O1s for: (a) HC, (b) N-HTC, (c) B-HC and (d) BN-HC.

Figure S8. Calculated structures of Ni-carbon complexes by DFT calculations. (a) COO⁻ group. (b) NH_2 , COO⁻ group. (c) NH_2 groups. (d) OH and NH_2 groups. (e) COO⁻ and OH groups. (f) OH groups. Atom colors are H (white), C (gray), O (red), N (dark blue), and Ni (light blue).

Figure S9. (a) Adsorption of Ni²⁺ onto BN-HC biocarbon as a function pH (20 mL of 50 mM of Ni²⁺, 0.05 g of adsorbent, 20 °C, after 30h); (b) Adsorption of Cu²⁺, Zn²⁺, Ni²⁺ and Co²⁺ onto HC biocarbon (Conditions: 20 mL of 10 mM of metal solution, 0.02 g of adsorbent, after 1 h, 20 °C).

Figure S10. XPS binding energy shifts of S 2p for (a) B-HC and (b) BN-HC and (c) Ni-BNS-HC.

Figure S11. (a) FT-IR spectra of Ni-BN-HC (red line) and Ni-BNS-HC (black line); (b) Raman spectra of BNS-HC (black line) and Ni-BNS-HC (red line) and (c) Py-FTIR spectra (150 °C) of Ni-BNS-HC (Lewis acidity (L), Brønsted acidity (B)).

Figure S12. Carbon balance calculation for the conversion of xylose with Ni-BS-HC or Ni-BNS-HC at 150 °C after 4 h reaction time.

Figure S13. Recycle of Ni-BNS-HC as catalyst for conversion of fructose to 5-HMF: (a) Change in 5-HMF yield with recycle times, (b) FT-IR spectra of fresh Ni-BNS-HC (black line) and Ni-BNS-HC after four recycles (red line). Reaction conditions: 0.1 g of fructose, 2 g of [BMIM]Cl ionic liquid, 0.05 g of catalyst at 120 °C and 1.5 h reaction time.

Catalwat	c	Dr	Eurot	ional anauna	Elemental content				
Catalyst	S _{BET}	Dp	runctional groups (mmol/g)			XPS (%)			
	(m^{2}/g)	(nm)	-OHª	-COOH ^b	Amino ^c	С	0	N	S
НС	1.1	25.0	1.03	1.39	-	63.4	36.6	-	-
B-HC	1.4	18.6	1.81	1.11	-	57.8	41.7	0.3	0.2
N-HC	1.8	17.8	1.49	2.37	2.37	59.3	38.8	1.9	-
BN-HC	2.2	18.4	0.53	1.59	5.4	60.1	36.5	3.2	0.2
Ni-BNS-HC	<5	-	-	-	-	30.7	59.7	2.4	1.8

Table S1. Properties of hydrothermal biocarbons (HC) according to ball-milling with L-cysteine (B-HC), synthesis with ammonia solution (N-HC) and combination (BN-HC) treatment.

^{*a*}Obtained by subtracting titration results using Na₂CO₃ from calculated values of NaOH ^{*b*}Obtained by subtracting concentration of sulfonic groups from titration results with NaHCO₃ ^{*c*}Obtained by XPS analysis.

Entry	Adsorbent	Langmuir			Freundlich			F-test (Langmuir/Freundlich)
		K _L (L/mg)	$Q_{\rm m}$ (mg/g)	R ²	K _F	n	R ²	F
1	HC	9.6 x 10 ⁻⁵	285.7	0.96	0.07	1.17	0.99	0.47
2	N-HC	1.0 x 10 ⁻⁴	312.5	0.87	0.04	1.07	0.98	0.96
3	B-HC	1.0 x 10 ⁻⁴	130.0	0.93	0.02	1.09	0.99	0.004
4	BN-HC	1.2 x 10 ⁻⁴	313.5	0.93	0.05	1.07	0.99	0.005

Table S2. Langmuir and Freundlich parameters for isothermal adsorption of Ni²⁺ onto functional hydrothermal biocarbon (HC) and amino-functional hydrothermal biocarbon (N-HC).

Cs(mM)	Q _{date} (mg/g)	Q _{model} (mg/g)		Residual	F-test ^a	
. ,		Langmuir	Freundlich	Langmuir	Freundlich	
HC						0.47
0	0	0	0	0	0	
19.5	28.6	28.3354	28.4862	0.0700	0.0130	
29	39.7	40.1977	39.9663	0.2477	0.0709	
38.7	51.2	51.2321	51.1224	0.0010	0.0060	
44.1	58	56.9558	57.1493	1.0905	0.7236	
N-HC						0.96
0	0	0	0	0	0	
19.5	29.8	32.6509	30.8054	8.1276	1.0108	
28.7	46.4	45.7978	44.2469	0.3626	4.6357	
38.4	59.8	58.3847	58.1237	2.0032	2.8098	
46	66	67.4460	68.8385	2.0909	8.0571	
B-HC						0.004
0	0	0	0	0	0	
18.6	33.7	37.5932	34.7832	15.1570	1.1732	
28.7	53.4	54.4603	52.1539	1.1242	1.5528	
37.2	66	67.1354	66.4509	1.2891	0.2033	
46.6	80.4	79.7822	82.0118	0.3817	2.5979	
BN-HC						0.005
0	0	0	0	0	0	
19.7	12.8	12.7295	12.6148	0.0050	0.0343	
29.7	18	18.2816	18.3631	0.0793	0.1318	
39.8	23.5	23.3794	24.0002	0.0145	0.2502	
50	30.7	28.0758	29.5692	6.8865	1.2787	

Table S3. Analysis of the residuals from Langmuir and Freundlich models with F-test.

^{*a*} F-test on data fits comparing Langmuir and Freundlich models.