Supporting Information

A bromophenol derivative for rapid detection of Hg²⁺/CH₃Hg⁺ in both environmental and biological samples through the activation of the ESIPT process

Tapendu Samanta, ‡ Narayan Das, ‡ Diptendu Patra, Pawan Kumar, Raja Shunmugam*

Corresponding Author:

***Prof. Raja Shunmugam**-Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India, West Bengal, 741246, email-sraja@iiserkol.ac.in

Authors:

‡ **Tapendu Smanta**-Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India, West Bengal, 741246

‡ Narayan Das- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India, West Bengal, 741246

Diptendu Patra- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India, West Bengal, 741246

Pawan Kumar- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India, West Bengal, 741246

No of pages: 16 (S1-S14) No of figures: 16 (S1-S16) No of table: 2 (S1-S2)

Table of Contents

1. Experimental Section	S1-S7
2. Photophysical studies of BDT	S8-S9
3. Quantum yield of BDT	S 9
4. Time dependent fluorescence study of BDT with Hg ²⁺	S10
5. Plot of I _{526 nm} vs conc. of Hg ²⁺ for BDT	S10
6. UV-vis spectra of BDT in presence of Hg ²⁺	S11
7. Time dependent study of BDT with CH ₃ Hg ⁺	S11
8. Comparative emission spectra of BDA and BDT+Hg ²⁺	S12
9. Mass spectrum of BDT in presence of Hg ²⁺	S12
10. Table of comparision of BDT with available sensors	S12-S13
11. Cytotoxicity study of BDT in HeLa cells.	S14
12. Elemental analysis of BDT	S15
13. References	S16

1. Experimental section

1.1 Materials:

4-Bromophenol, hexamethylenetetraamine (HMTA), Trifluoroacetic acid (TFA), 1,2-Ethanedithiol, Boron Trifluoride Diethyl Etherate, Dichloromethane (**DCM**) and **DMSO-d₆** were purchased from Aldrich, Acros, Merck and used as received. The stock solutions of metal salts used were NaCl, KF, LiCl, MgSO₄.7H₂O, CdCl₂, CuSO₄.5H₂O, ZnCl₂, Pb(NO₃)₂, CoCl₂, FeCl₃, FeCl₂, SnCl₂, CaCl₂, CrO₃, Hg(NO₃)₂. Deionised water was used to make the metal salt solutions.

1.2 Methods:

NMR Characterization:

NMR spectroscopy was carried out using DMSO- d_6 as a solvent on a Bruker 500 MHz spectrometer. NMR spectra of solutions in DMSO- d_6 were calibrated to Tetramethylsilane as internal standard (δ H 0.00).

Fluorescence Measurements:

Fluorescence emission spectra were recorded on fluorescence spectrometerer (Horiba Jobin Yvon, Fluromax-4, 250-900 nm). Emission spectra for all solutions were measured with an excitation wavelength of 350 nm. Slit widths and scan rates were adjusted to allow adequate intensity if needed.

UV-Vis experiments:

UV-visible absorption measurements were carried out on Perkin-Elmer Lambda 35UV-Vis spectrometer, with a 240 nm/min scan rate. The absorption spectra for all solutions were measured in a quartz cell of 1 cm.

ESI-MS Analysis:

HRMS analyses were performed with Q-TOF YA263 high-resolution (Waters Corporation) instruments by (+)ve mode electrospray ionization.

Elemental analysis:

Elemental analysis of the compound was examined by the X-Max SN: 60499, Model: 51- XMX1004 of Oxford Instruments.

Confocal Microscopy

All the images for the biological samples were taken in CLSM-710 (Zeiss). We used blue laser (405 nm) for the excitation of the biological sample as our sample was showing fluorescence at 525 nm in presence of mercury.

Sample preparation for UV-Vis and fluorescence studies:

The stock solutions of **BDA** and **BDT** were initially prepared in DMSO medium, and further dilution was made by adding water as per requirement for spectroscopic studies. Then, a fixed concentration of BDT (10 μ M) was treated with different metal ions of 50 μ M concentration for the selectivity experiments, and the corresponding fluorescence spectra were measured.

Cell Culture:

HeLa cells were cultured in a DMEM medium containing 10% FBS and 1% antibiotic solution (penicillin and streptomycin). The cells were incubated at 37 °C and 5% CO₂ level inside the incubator. Trypsin-EDTA solution was used for Harvesting the cells.

MTT Assay:

 5×10^3 cells were seeded into each well of a 96-well plate. After 24 h, different concentrations of **BDT**(25-500 µM) were treated and incubated for the next 24 h in standard culture conditions. The treatment of MTT solution to each well was performed, and kept the 96-well plate inside the incubator at 37 °C for 4 h. The formation of formazan crystals was confirmed under a microscope. 100 µL of DMSO was added to each well of the well plate and allowed to solubilize the crystals for 5–10 min. The absorbance in each well was quantified in a multimode reader at a wavelength of 570 nm. The percentage viability of each treatment group was quantified compared to untreated control.

Confocal Laser Scanning Microscopy (CLSM) imaging: 5×10^4 HeLa cells were seeded into each well of a 24-well plate containing 13 mm coverslips. The cells were allowed to adhere firmly to the coverslips for 24 h. Then **BDT** (10 µM) was incubated in cell culture conditions for 12 h. The cells were then washed twice with PBS to remove cellular debris or dead cells. Cells were fixed by incubating in 4% PFA for 30 min. The incubated cells were treated with different concentrations of Hg²⁺ (10µM, 20 µM) ion for 60 minutes. The cells were then washed with PBS and treated with mounting media at RT, and placed on a sterile glass slide. The slides were then allowed to dry at RT for 24 h, and imaging was done under a CLSM microscope.

1.3 Synthesis and characterization

Synthesis of Compound BDA¹⁷:

In a 250 ml round bottom flask, 4-bromophenol (1.5 g, 8.7 mmol) was dissolved in trifluoroacetic acid (40 ml) followed by the addition of HMTA (4.9 g, 34.7 mmol). The resulted reaction mixture was refluxed overnight at 120 °C. After completion of the reaction, the reaction mixture was cooled and poured into 200 ml 2N HCl solution, and stirred at 80°C for one hour. The obtained yellow solid was filtered and washed by water (1 L). The obtained crude product was dried over a vacuum pump to get compound **BDA**as light-yellow powder (1.6 g, 80%).¹H NMR (DMSO-d₆, 500 MHz), δ (ppm):11.60 (bs, 1H), 10.19 (S, 2H), 8.12 (s, 2H). ¹³C NMR (DMSO-d₆, 500 MHz), δ (ppm): 190.9, 160.9, 138.5, 125.7, 111.3. ESI-MS: m/z: Calculated for C₈H₄BrO₃⁻ : 226.93 [M⁻], found: 226.94

Synthesis of BDT:

In a 100 mL round bottom flask, **BDA** (0.7 g, 3.06 mmol) was dissolved in dry DCM (30 ml)by maintaining an inert atmosphere and $BF_3.OEt_2(1.3 \text{ g}, 9.18 \text{ mmol})$ was added by keeping the temperature at 0°C. After stirring the reaction mixture for 10 minutes, 1,2-ethanedithiol (0.720 g, 7.65 mmol) was added, and the reaction mixture was kept in a mixing condition at 0°C for overnight. After completing the reaction, the organic part was washed

with sodium bicarbonate, water, and brine solution. Organic layers were collected and dried over anhydrous sodium sulphate. The crude product was purified by flash column chromatography using hexane/ethyl acetate as eluent to obtain **BDT** as a white amorphous solid (0.95 g, 82%).

¹H NMR (DMSO-d₆, 500 MHz), δ (ppm):9.5 (s, 1H), 7.6 (s, 2H), 6.0 (s, 2H), 3.41-3.47 (m, 4H), 3.29-3.35 (m, 4H).¹³C NMR (DMSO-d₆, 500 MHz), δ (ppm): 150.4, 132.2, 129.9, 111.2, 48.2, 39.1. ESI-MS: m/z: Calculated for C₁₂H₁₂BrOS₄⁻: 378.90 [M⁻], found: 378.88

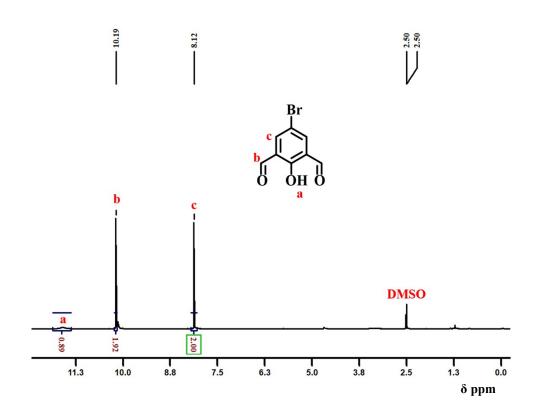


Figure S1: ¹HNMR spectrum of Compound BDAin DMSO-d₆

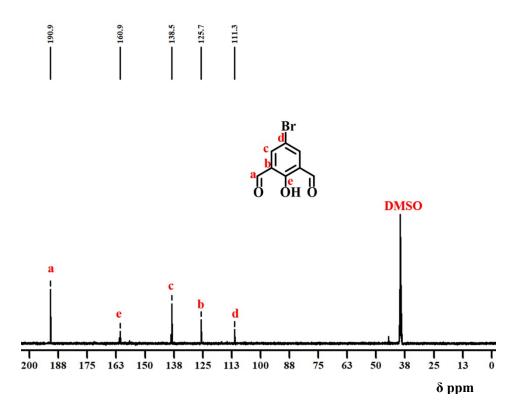


Figure S2: ¹³C NMR spectrum of Compound BDA in DMSO-d₆

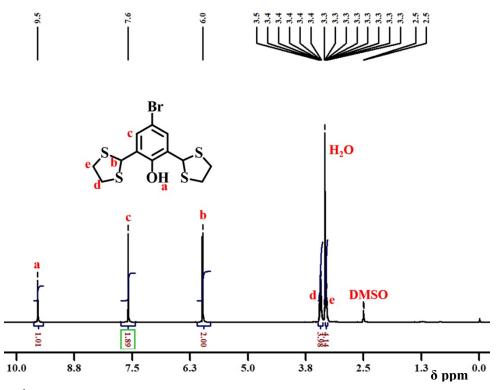


Figure S3: ¹HNMR spectrum of Compound BDT in DMSO-d₆

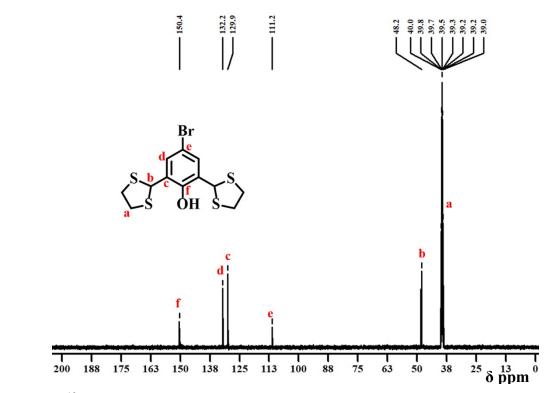


Figure S4: ¹³C NMR spectrum of Compound BDT in DMSO-d₆

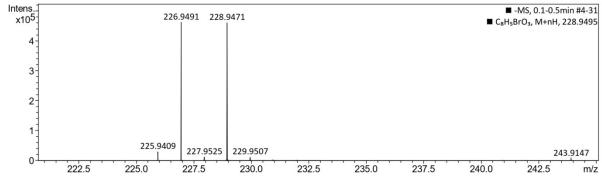
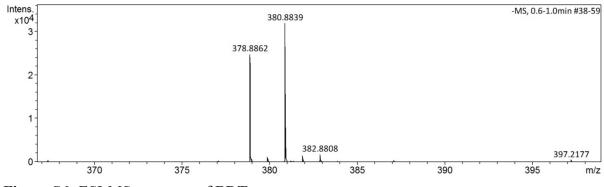
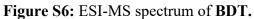




Figure S5: ESI-MS spectrum of BDA.

2. Photophysical studies of BDT

We have got a new peak at 350 nm of BDT in the presence of mercury. We have use 350 nm as the excitation wavelength for all the fluorescence study.

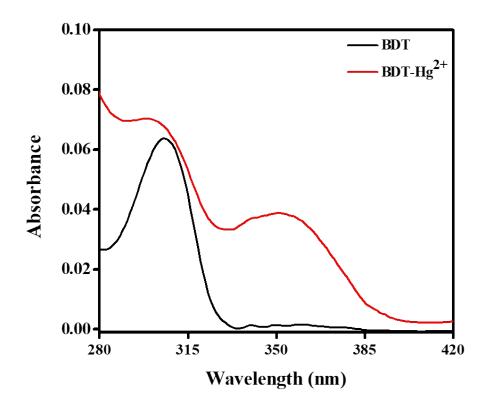
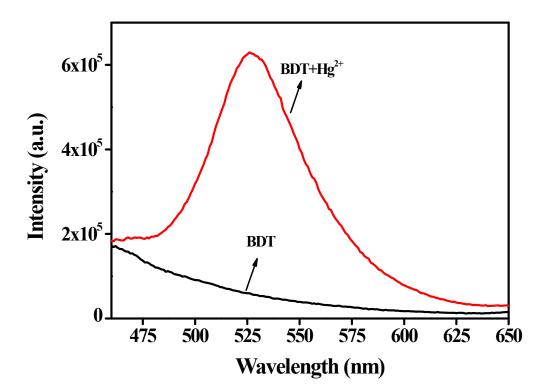
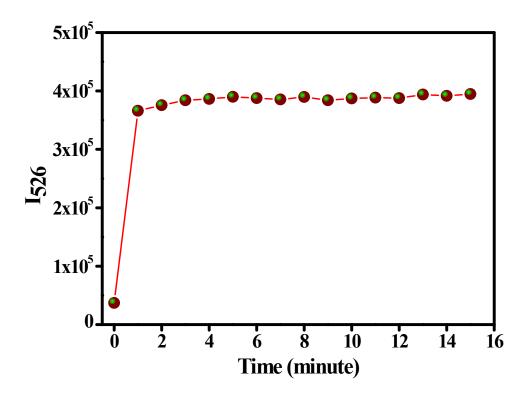



Figure S7:UV-vis spectra of BDT (15 μ M) with and without Hg²⁺ (30 μ M) in DMSO/PBS buffer (4:1, v/v, pH 7.4) medium.

Figure S8: Fluorescence spectra of **BDT** (10 μ M) in absence and presence of Hg²⁺ (50 μ M) in DMSO/PBS buffer (4:1, v/v, Ph=7.4) medium.

3. Quantum yield (Q) calculation for BDT:


Quatum yield for BDT has been caluculated using the following equation,

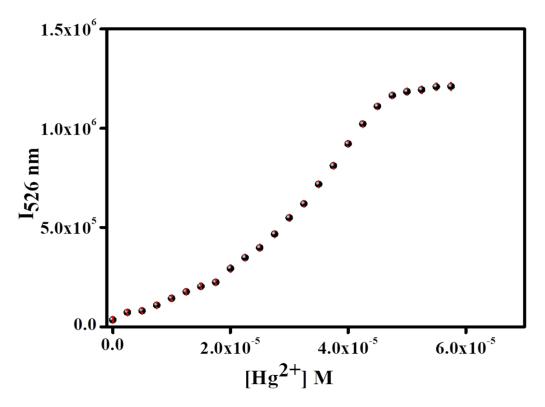
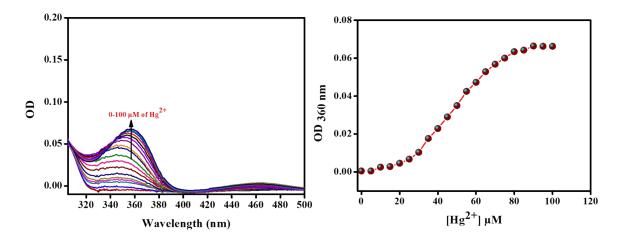
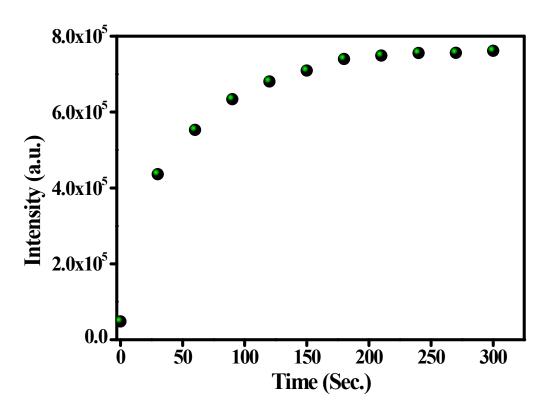
$$Q_{S} = Q_{R} \times \frac{I_{S}}{I_{R}} \times \frac{A_{R}}{A_{S}} \times \frac{\eta_{s}^{2}}{\eta_{R}^{2}} - \text{Equation 1.}$$

 Q_s = quantum yield of the sample, Q_R =quantum yield of reference, I_s = area under the fluorescence curve of the sample, I_R = area under the fluorescence curve of reference, A_R = absorbance of the reference; A_S = absorbance of the sample; η_S = refractive index of sample; η_R = refractive index of reference.

Here Quinine sulfate (in 0.1 M H_2SO_4) has been used as reference to calculate the quatum yiled of BDT.

Quantum Yield of **BDT** (Q_S) = 0.11 Quantum Yield of **BDT** (%) = 11

Figure S9:Time dependent fluorescence study of **BDT** (5 μ M) in presence of Hg²⁺ (20 μ M) in DMSO/PBS buffer (4:1, v/v, Ph=7.4) medium.

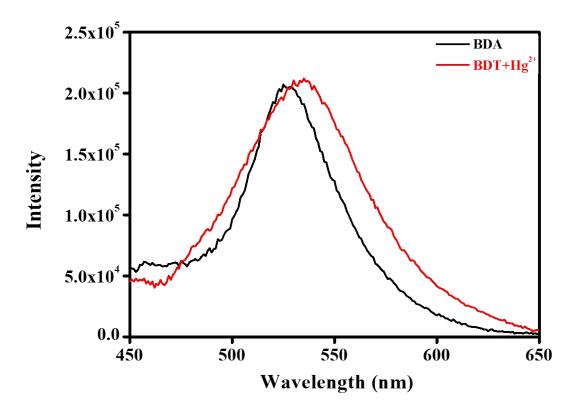

Figure S10:Plot of $I_{526 nm}$ vs conc. of Hg^{2+} ion obtained from fluorescence titration studies of BDT.

Figure S11: (A)UV-vis spectra of **BDT** (40 μ M) with changing the concentration of Hg²⁺ (0-100 μ M) in DMSO/PBS buffer (4:1, v/v, Ph=7.4) medium (B) Corresponding OD_{360 nm} vs. concentration of Hg²⁺ plot.

Figure S12:Time dependent fluorescence study of **BDT** (10 μ M) in presence of CH₃Hg⁺ (30 μ M) ion in DMSO/PBS buffer (4:1, v/v, Ph=7.4) medium.

Figure S13:Fluorescence spectra of **BDA** (5 μ M) and **BDT** (5 μ M) in presence of Hg²⁺ (10 μ M)in DMSO/PBS buffer (4:1, v/v, Ph=7.4) medium.

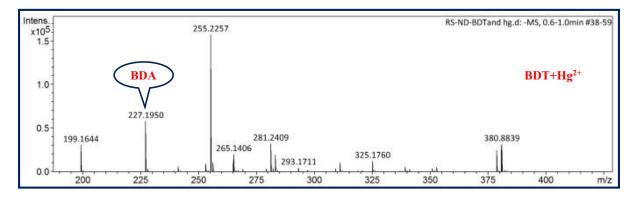


Figure S14: Mass Titration of BDT in the presence of Mercury

Table S1: Comparative table of various reported fluorescent sensors for $\rm Hg^{2+}$ and $\rm CH_3Hg^+$ ions.

SI.	Analyte(s)	Medium	Detection	LOD	Biological	Ref.
No			time (min.)		study	
1	Hg^{2+}	PBS buffer				1
		(2% DMSO)	35	7.6 × 10 ⁻⁹ M	Yes	
2	Hg^{2+}	THF-water	2			2
		(1:1)		1.59 × 10 ⁻⁸ M	Yes	
3	Hg^{2+}	EtOH-water	1	1.03 × 10 ⁻⁸ M	Na	2
		(1:1)		$1.03 \times 10^{\circ} M$	No	3

4	Hg ²⁺	THF-water (1:1)	NA	3.1 × 10 ⁻⁷ M	No	4
5	Hg ²⁺	PBS-DMSO (5:5)	40	6.8 × 10 ⁻⁸ M	Yes	5
6	Hg ²⁺	HEPES buffer-EtOH (1:1)	10	5.8 × 10 ⁻⁹ M	No	6
7	Hg ²⁺	MeCN-water (1:1)	< 1	55 × 10-9 M	Yes	7
8	Hg ²⁺	99 % PBS buffer	15	19.3 × 10 ⁻⁹ M	Yes	8
9	Hg ²⁺	EtOH-water (2:8)	10	4 × 10 ⁻⁸ M	Yes	9
10	Hg ²⁺	THF	10	1 × 10 ⁻⁵ M	No	10
	Hg ²⁺	PBS buffer	3	2.7 × 10 ⁻⁹ M	Var	11
11	CH ₃ Hg ⁺	PBS buffer	30	5.7 × 10 ⁻⁶ M	Yes	11
	Hg^{2+}	PBS buffer	60	5 × 10 ⁻⁹ M		12
12	CH ₃ Hg ⁺		90	NA	Yes	
	Hg ²⁺	buffered	<2	1.82 × 10 ⁻⁹ M		13
13	CH ₃ Hg ⁺	solution (10 mM HEPES, pH=7.4,1% CH3CN	<5	1 × 10 ⁻⁶ M	Yes	
	Hg ²⁺	HEPES buffer	<10	20 × 10 ⁻⁹ M		14
14	CH ₃ Hg ⁺	(pH 7.4, 1% CH ₃ CN)	10	NA	Yes	
15	Hg ²⁺		< 1	8.2 × 10-9 M		15
	CH ₃ Hg ⁺	– DMSO-water (3:2)	4	1.1 × 10-6 M	Yes	
16	Hg ²⁺	aqueous solution (HEPES, pH 7.4, 0.5% DMF)	5	9.1 × 10 ⁻⁹ M	Yes	16
	CH ₃ Hg ⁺	/···, 0.5/0 Divit)	1	21.2 × 10 ⁻⁹ M		
17	Hg ²⁺	DMSO/PBS buffer (4:1, v/v,	< 1	3.8 × 10 ⁻⁹ M	Yes	This work
	CH ₃ Hg ⁺	pH 7.4)	< 3	$0.8 imes 10^{-6} \mathrm{M}$		

Table S2: Quantification of Hg²⁺ in environmental samples using **BDT**.

Samples	[Hg ²⁺] in μM (Spiked)	[Hg ²⁺] in μM (obtained)	% Of recovery
	0	NA	NA
	2	1.926 ± 0.0308	96.3
Pond water in BDT	4	4.068 ± 0.0682	101.7

	6	5.746 ± 0.0894	95.7
	8	8.406 ± 0.126	105.0
	10	10.268 ± 0.242	102.6
Sample	Obtained value of	Obtained value of	% Of recovery
	Hg ²⁺ (µM) using	Hg ²⁺ (µM) using	
	BDT	ICP-MS	
Powdered Vermilion	0.534 μM	0.4985 µM	107

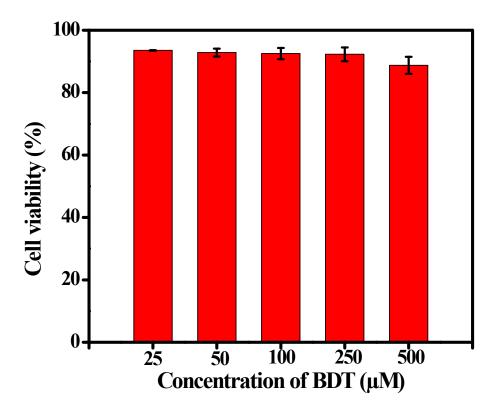
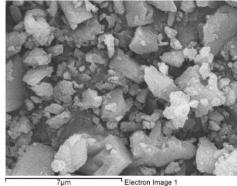


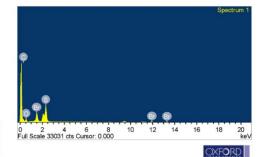
Figure S15: Cytotoxicity study of BDT in HeLa cells.

Project 1

Spectrum processing : Peaks possibly omitted : 8.089, 9.439 keV


Processing option : All elements analyzed (Normalised) Number of iterations = 5

Standard


Sta	indard	
С	CaCC	03 1-Jun-1999 12:00 AM
0	SiO2	1-Jun-1999 12:00 AM
S	FeS2	1-Jun-1999 12:00 AM
Br	KBr	1-Jun-1999 12:00 AM

Elem... Weight% Atomic%

СК	45.98	64.06
OK	23.36	24.43
SK	16.27	8.49
Br L	14.39	3.01
Totals	100.00	

Electron Image 1

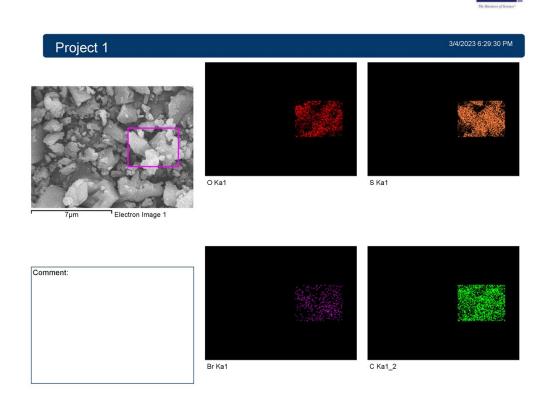


Figure S16: Elemental analysis of BDT.

OXFORD

4. References:

- 1. Gu, B.; Huang, L.; Su, W.; Duan, X.; Li H.; S.Yao, Anal. Chim. Acta, 2017, 954, 97-104.
- 2. Xu, D.; Tang, L.; Tian, M.; He P.; X. Yan, Tetrahedron Lett., 2017, 58, 3654-3657.
- 3. Lan, L.; Niu, Q.; T.Li, Anal. Chim. Acta, 2018, 1023, 105-114.
- 4. Leng, T.; Ma, Y.; Chen, G.J. Photochem. Photobiol. A, 2018, 353, 143-149.
- Huang, L.; Yang, Z.; Zhou, Z.; Li, Y.; Tang, S.; Xiao, W.; Hu, M.; Peng, C.; Chen, Y.; Gu, B.; H.Li, *Dyes Pigm.* 2019, 163, 118-125.
- 6. Zhou, Y.; He, X.; Chen, H.; Wang, Y.; Xiao, S.; N.; Zhang, Li, D.; K. Zheng, Sens. Actuators B, 2017, 247, 626-631.
- 7. Y. Y.Liu, S.Naha, N.Thirumalaivasan, S.Velmathi and S. P.Wu, Sens. Actuators B, 2018, 277, 673-678.
- 8. Wang, Z.; Zhang, Y.; Yin, J.; Yang, Y.; Luo, H.; Song, J.; Xu X.; Wang, S. ACS Sustainable Chem. Eng. 2020, 8, 12348-12359.
- Tian, M.; Wang, C.; Ma, Q.; Bai, Y.; Sun, J.; Ding, C.; ACS Omega, 2020, 5, 18176-18184.
- 10. J. Ding, H. Li, Y. Xie, Q. Peng, Q. Li and Z. Li, Polym. Chem. 2017, 8, 2221-2226.
- 11. Pan, S.L.; Li, K.; Li, L.L.; Li, M.Y.; Shi, L.; Liu, Y.H.; Yu, X.Q., Chem. Commun. 2018, 54, 4955-4958.
- 12. Santra, M.; Ryu, D.; Chatterjee, A.; Ko, SK.; Shin, I.; Ahn, K. H. Chem. Commun., 2009,45, 2115–2117.
- 13. Neupane, L.; Park, J.; Mehta, P.K.; Oh, ET.; Parkb, H. J.; Lee, KH. Chem. Commun., 2020, 56, 2941–2944.
- 14. Chen, X.; Baek, KH.; Kim, Y.; Kim, SJ.; Shin, I.; Yoon, J. Tetrahedron, 2010,66, 4016-402.
- 15. Samanta, T.; Das, N.; Patra, D.; Kumar, P.; Sharmistha B.; Shunmugam, R., ACS Sustainable Chem. Eng., 2021, 9, 5196–5203.
- 16. Oh, S.; Jeon, J.; Jeong, J.; Park, J.; Oh, E.T.; Park, H.J.; Lee, K.H., Anal. Chem., 2020, 92, 4917-4925.
- 17. Reinhard, D.; Schöttner, L.; Brosius, V.; Rominger, F. and Mastalerz, M. Eur. J. Org. Chem., 2015: 3274-3285.