Supporting Information

Both sides matter: Anode Configurations alter the Activity of Electrolyzers for Organic Hydrogenation

Kevinjeorjios Pellumbi[†]^{a,b}, Jonas Wolf[†]^{a,b}, Sangita Viswanathan^{A,b}, Leon Wickert^{a,b}, Mena-Alexander Kräenbring^c, Julian T. Kleinhaus^b, Kai junge Puring^a, Fatih Özcan³, Doris Segets^{c,d}, Ulf-Peter Apfel^{a,b}* and Daniel Siegmund^{a,b}*

^a Fraunhofer Institute for Environmental, Safety and Energy Technology, UMSICHT, Oberhausen, Germany

^bInorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany

^cInstitute for Energy and Materials Processes – Particle Science and Technology

(EMPI-PST), Duisburg, Germany

^dCenter for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg, Germany

*Correspondence: ulf.apfel@umsicht.fraunhofer.de, ulf.apfel@rub.de and daniel.siegmund@umsicht.fraunhofer.de

† These authors contributed equally

Table of contents

3
3
3
4
4
5
5
6
7
4
5
6

Materials

Unless otherwise stated, all chemicals were purchased from commercial vendors and used without further purification. The elemental iron, nickel, and sulphur used for the synthesis of the different pentlandites were purchased from Alfa Aesar. 2-methyl-3-butyn-2-ol (98 %), 2-methyl-3-buten-2-ol, (98 %) and 2-methyl-3-butan-2-ol (98 %) were purchased from Sigma Aldrich. The Fumasep FAA-3-PK-130 and the Nafion 115, ion-exchange membranes were purchased by Quitech Gmbh, while IrO_2 (Iridium(IV)-oxide, PremionTM, 99.99 % (Metallbasis), Ir 84.5 % min.) was purchased by Fischer Scientific. The porous transport layers (PTLs) used in this work were bought by the following commercial vendors: H23 carbon paper (Quintech GmbH), SGL-GFD-2.5 mm (Sigracell), Stainless Steel Mesh (Haver-Boecker), Titanium PTLs (2-GDL40, Bekaert) and used without further modifications.

Mechanochemical synthesis of the used Fe₃Ni₆S₈ catalyst

The synthesis of the $Fe_3Ni_6S_8$ pentlandite catalyst was conducted through mechanochemical means, as previously reported.¹ Under argon atmosphere, 5 g of a stoichiometric mixture of the elemental powders and 24 g of 2 mm zirconium oxide milling balls were mixed in a 20 mL zirconium oxide grinding vessel. In a Fritsch Planetary Micro Mill Pulverisette 7 premium line, the mixture was milled for 120 min at 1100 rpm for two cycles with a 60 min break in between to obtain the pentlandite catalyst.

Electrode fabrication

To prepare the cathode, we employed our previously reported PTFE-containing catalytic inks.² In short, 0.5 g of the mechanochemically synthesized Fe₃Ni₆S₈ catalyst was mixed with 15 g 2-propanol, 4 mL H₂O, and 0.2 g Triton X 100. The mixture was placed into an ultrasonic bath for 5 min. Afterwards, the ink was dispersed at 13,600 rpm using a T 25 digital Ultra-Turrax for 1 min. Afterwards, the respective amount of a 60 wt.% PTFE dispersion was added while stirring. The suspension was then homogenously spray-coated with an Iwata SBS airbrush on an 8.5x8.5 cm carbon cloth or carbon felt that was heated on a hot plate to 100 °C. Afterwards, the PTFE-containing electrodes were heat-treated at 240 °C for 20 min to remove the added surfactants.

For the anode fabrication, 500 mg of IrO2 (Thermofischer) was

The resulting catalyst-coated sheets were cut into circular electrodes of a diameter of 40 mm with the help of an iron punch. The catalytic loading was determined through the weight difference between the non-coated substrates and the coated electrodes after drying.

Hot-pressing of the CCM-prepared membranes on the different anode PTLs was performed at $120 \,^{\circ}$ C at 10 bar for 30 seconds.

Electrochemical investigations in a zero-gap electrolyzer

The electrochemical investigations in membrane electrode assemblies (MEAs) were performed in an in-house built single-cell electrolyzer with an electrode area of 12.57 cm² (40 mm diameter). A compressed Ni-foam served as the anode and a porous carbon electrode coated with 5 mg cm⁻² of the respective catalysts served as the cathode. PTFE gaskets and a torque value of 5 N m over eight screws were employed to ensure a leak-less operation. The used Fumasep membranes were conditioned overnight in 1 M KOH before use. During electrolysis, the anolyte and catholyte solutions were circulated through the half-cells at a flow rate of 12 ml min⁻¹, while a homogeneous liquid distribution was guaranteed with Ti-based serpentine flow fields. A copper plate in direct contact with the flow field served as the current collector plate. Electrolysis was performed for 2 h, with samples being taken at the end of the electrolysis from both the anolyte and the catholyte. The respective chronopotentiometric curves up to a current density of 80 mA cm⁻² (1 A) were recorded on a Gamry Interface 1010B potentiostate/galvanostate, while for current density values above 80 mA cm⁻², a Gamry Reference 3000 potentiostate/galvanostate was employed. For each experiment, a new MEA was constructed/investigated, with each experiment being repeated at least twice to ensure reproducibility.

EIS analysis was performed potentiostatically at a cell voltage of 2.9 V, between 1 Hz -100 Hz with a 10 mV rms perturbartion. Control of the EIS data was performed via the Kramers-Kroning test.

Nuclear Magnetic Resonance (NMR) analysis

The catholyte and anolyte solution samples were additionally analyzed via ¹H-NMR spectroscopy with potassium hydrogen phthalate as the internal standard. NMR samples consisted of 50 μ l sample solution, 50 μ l of a solution containing 1.25 μ mol potassium hydrogen phthalate standard in D₂O and 400 μ l D₂O as solvent. ¹H-NMR analysis was conducted using an Avance-III 300 MHz spectrometer at 22 °C. Under the applied conditions and concentrations, equal integrals of the standard and the product protons correspond to equal concentrations. This was confirmed by control experiments with known amounts of MBY, MBE, and MBA.

Product quantification for the zero-gap experiments

The faradaic efficiency (FE) of MBE and MBA was calculated with equation 1, (with n_p as the amount of product p in mol, z as the number of transferred electrons (z = 2 for MBE, z = 4 for MBA), F as Faraday constant (96485 A s mol⁻¹), I as applied absolute current in A and t as reaction time (7200 s)):

$$F.E._p = n_p \cdot \frac{zF}{I \cdot t} \cdot 100 \%$$
⁽¹⁾

The amount of product n_p was calculated with equation 2 (with I as the integral of the product peak (6H) in the ¹H-NMR spectrum normalized to the peak integral of the internal standard (4H), and n_{St} as the amount of internal standard in the NMR sample (1.25 µmol)):

$$n_p = I \cdot \frac{2}{3} \cdot n_{St} \cdot 1000 \tag{2}$$

The yield was determined with equation 3:

$$yield = \frac{n_p}{n_{MBY}} \cdot 100 \%$$
⁽³⁾

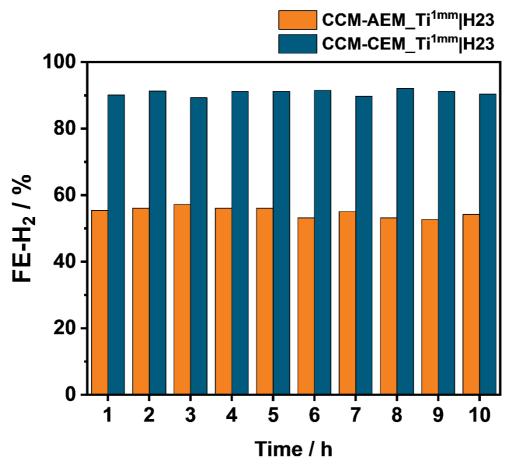
FE and yield error bars were calculated from the results of duplicates.

The potential values have been calculated by determining the arithmetic mean of the respective potential data for all data points of the last 10 min of the experiment for both of the two measurements. The arithmetic mean and the standard deviation of the resulting values were determined as the final data points of the respective experiment.

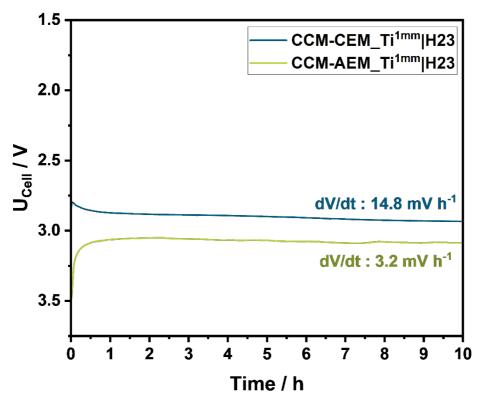
For the quantification of hydrogen, the zero-gap electrolyzers under investigation were coupled to an online Shimdazu QP2020 GC-MS equipped with a Supelco Carboxen 1010 Plot column. The catholyte reservoir was completely sealed with Ar flowing through at a flow rate of 10 ml min⁻¹ at an overpressure of 50 mbar in the catholyte compartment. Gas-samples were taken every 1 h for a total of 10 h, at 80 mA cm⁻².

Atomic force microscopy (AFM) analysis

The atomic force microscopy (AFM) measurements were conducted using an Anton Paar Tosca 400 atomic force microscope. Each sample was cut into a 1 cm² square and glued to the sample holder using a double-sided copper tape. The measurements were carried out using a contact mode tip, a scanning area of 10 μ m by 10 μ m and a scan rate of 0.1 lines per second. The resulting image was then analyzed using the Tosca Analysis software (Version 7.4.9286). The topography data was leveled and any measurement artefacts were digitally touched up. The surface roughness values were calculated according to the arithmetical mean height as defined in ISO 25178 in the final step.


Visualization of the compression pressure

A Prescale film from Fujifilm was employed to measure and visualize the pressure distribution within the MEA. The low-pressure (LW) film set was inserted between the cathode and anode porous-transport layers (PTLs) instead of the membrane and the eight screws were tightened with a torque of 5 N m. After allowing the dye reaction to proceed for 2 min, analysis of the pressure distribution was performed with the accompanying Epson Perfection Scanner via the help of the FDF-808E software. Prior to each measurement cycle, software calibration was performed with the help of the included calibration sheet.


Detailed description of the tested cell assemblies

Anode PTL	Cathode PTL	Membrane Type	Deposition Type	FE _{MBE} FE _{MBA}		U_{cell}
Ti-1 mm	H23	AEM	ССМ	41.4±1.2	13.3±5.2	2.9±0.01
Ti-0.15 mm	H23	AEM	ССМ	38.3±4.4	2±0.2	2.9±0.04
Ti-1 mm	SGL	AEM	ССМ	41.4±3.8	8.3±2.7	3.2±0.006
Ti-0.15 mm	SGL	AEM	ССМ	45.8±3.5	7.5±1.2	3.2±0.01
SSM	SGL	AEM	ССМ	36.8±9.6	10.2±3.0	3.3±0.06
H23	SGL	AEM	ССМ	43.1±7.6	10.1±0.7	3.9±0.06
Ti-1 mm	H23	AEM	CCS	35.6±2.5	12.4±1.8	3.7±0.01
Ti-0.15 mm	H23	AEM	CCS	43.7±1.3	13.4±1.5	3.3±0.02
Ti-1 mm	SGL	AEM	CCS	35.8±3.5	13.5±1.5	4.5±0.05
Ti-0.15 mm	SGL	AEM	CCS	38.4±4.2	10.7±1.2	5.5±0.05
SSM	SGL	AEM	ССМ	48.5±2.7	11.6±2.8	6.2±0.08
H23	SGL	AEM	ССМ	40.6±5.3	9.7±0.9	3.5±0.002
Ti-1 mm	H23	CEM	ССМ	6.5±0.3	0.65±0.4	2.8±0.05
Ti-0.15 mm	H23	CEM	ССМ	27.2±4.8	5.2±2.2	3.2±0.15
Ti-1 mm	SGL	CEM	ССМ	22.3±3.2	4.8±1.5	5.6±0.1
Ti-0.15 mm	SGL	CEM	ССМ	21.9±3.1	4.2±0.3	5.0±0.4
SSM	SGL	CEM	ССМ	28.9±2.3	5.6±0.8	3.10±0.007
H23	SGL	CEM	ССМ	35.6±5.2	4.9±0.7	3.5±0.2
Ti-1 mm	H23	CEM	CCS	17.2±2.1	1.8±2.1	2.8±0.06
Ti-0.15 mm	H23	CEM	CCS	23.8±2.8	2.2±2.8	2.9±0.01
Ti-1 mm	SGL	CEM	CCS	31.1±5.9	8.9±5.1	5.5±0.1
Ti-0.15 mm	SGL	CEM	CCS	24.9±3.1	4.3±1.1	4.9±0.4
SSM	SGL	CEM	CCM	13.2±3.8	5.1±1.1	3.8±0.04
H23	SGL	CEM	ССМ	27.8±2.6	7.3±1.3	3.8±0.003

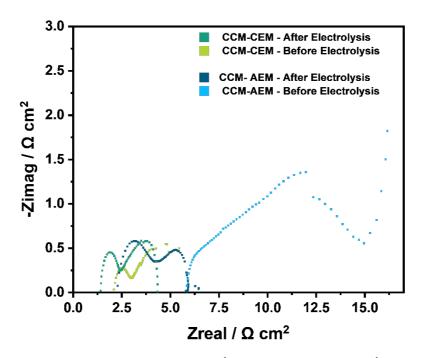

Table S1. Tabular description of all experiments performed in our zero-gap electrolyzer for the different cell assemblies, aiming to further aid researchers of understanding/selecting specific trends.

Figure S1. Faradaic Efficiency towards the generation of hydrogen for CCM-CEM_Ti^{1mm}|H23 and CCM-AEM_Ti^{1mm}|H23 at 80 mA cm⁻² (Catholyte: 1 M MBY, 0.3 M KOH in H₂O, Anolyte: H₂O).

Figure S2. Cell voltage curves obtained during long-term experiments at 80 mA cm⁻² for CCM-CEM_Ti^{1mm}|H23 and CCM-AEM_Ti^{1mm}|H23 (Catholyte: 1 M MBY, 0.3 M KOH in H₂O, Anolyte: H₂O – Electrolyte volumes were increased to 500 mL to better match the long-term conditions). The corresponsing voltage decay values over 10 h of electrolysis are also given.

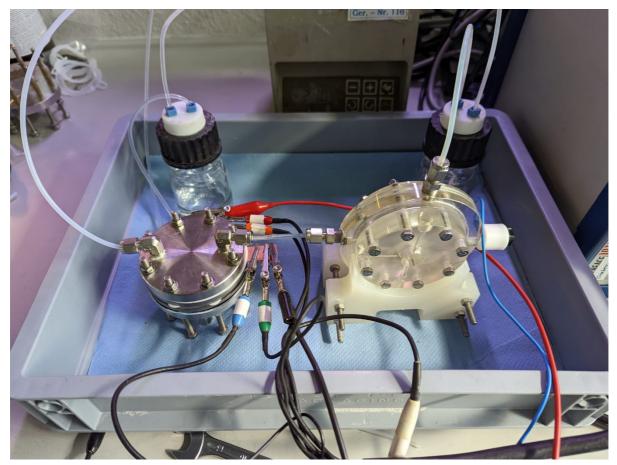


Figure S3. Impedance spectra for CCM-CEM_Ti^{1mm}|H23 and CCM-AEM_Ti^{1mm}|H23 2 (Catholyte: 1 M MBY, 0.3 M KOH in H₂O, Anolyte: H₂O) obtained before and after electrolysis at 80 mA cm⁻² for 10 h. A previously employed EIS model used by Atobe and co-workers was employed to fit the obtained data.

AFM Results

CEM	0.1 mg cm ⁻²	0.5 mg cm ⁻²	1.5 mg cm ⁻²		
Surface roughness: 0.1 mg cm ⁻² : 113 nm 0.5 mg cm ⁻² : 237 nm 1.5 mg cm ⁻² : 306 nm	μm 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	ри 5.0 4.5 4.0 3.5 3.0 2.5 2.5 2.5 2.5 0.0 0 1 2 3 0 0 1 2 3 0 0 0 1 2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0	um 50 40 30 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10		
AEM Surface roughness: • 0.1 mg cm ⁻² : 100 nm • 0.5 mg cm ⁻² : 317 nm • 1.5 mg cm ⁻² : 175 nm	μπ 10 10 10 10 10 10 10 10 10 10	pm 10 10 10 10 10 10 10 10 10 10 10 10 10	^{µm} 7 6 3 2 1 0 0 2 2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		

Figure S4. Results of the AFM analysis for the investigated CCM, CEM and AEM membranes with different loadings of IrO_2 as indicated in the upper row.

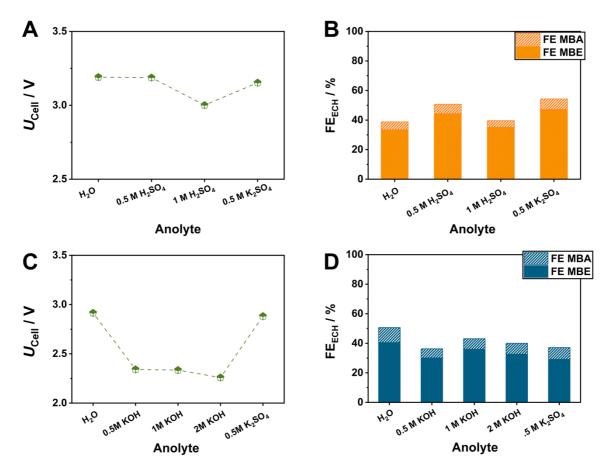


Figure S5. Photograph of the herein developed electrolyzer set-up to measure half-cell potentials during ECH in zero-gap electrolyzers.

Table S2. Analysis of the Ru resistances recorded at the half-cell and full-cell level during the investigation of the half-cell potentials for the ECH.

Cell assembly	U _{cell} / V	Ru ^{Cell} / Ω	Associated voltage loss / V	E ^{Cathode} / V	Remaining Voltage / V
CCM-AEMTi ¹ SGL	3.18	1.64	1.64	0.42	1.12
CCS-AEMTi ¹ SGL	4.47	0.78	0.78	0.28	3.41
CCM-AEMTi ^{0.15} SGL	3.24	1.08	1.08	0.79	1.37
CCS-AEMTi ^{0.15} SGL	5.46	1.76	1.76	0.67	3.03
CCM-CEMTi ¹ H23	2.79	0.72	0.72	0.51	1.56
CCS-CEMTi ¹ H23	2.89	0.67	0.67	0.6	1.62
CCM-CEMTi ^{0.15} H23	3.28	0.59	0.59	0.45	2.24
CCS-CEMTi ^{0.15} H23	2.94	0.61	0.61	0.4	1.93

Improvement of the anolyte environment

Figure S6. Effect of the anolyte on the electrochemical hydrogenation of MBY in CEM and AEM-separated zero-gap electrolyzers at 80 mA cm⁻² after 1 h of electrolysis. For the investigation employing CEM, the CEM-CCM_Ti^{1mm}|SGL cell assembly was employed (A-B), while for the AEM, the AEM-CCM_Ti^{0.15mm}|H23 cell assembly was used (C-D).

Comparison of the obtained cell voltages and selectivities against the stateof-the-art

Table S3. Tabular comparison of different zero-gap and undivided reactor types for the electrochemical hydrogenation against the herein presented results. *Denotes the use of a hydrogen pump, ie hydrogen oxidation on Pt at the anode.

	Cathode	Anode					j /		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Anode Reaction	Memb		-	U _{cell} / V	Ref
Ag NPs on Carbon ClothNiFe Hydrogenation to BHMFHMF OXidation to FDCA (pH 13)CEM5021.53Ag NPs on Carbon ClothNiFe to BHMFHMF Hydrogenation to BHMFHMF FDCA (pH 13)AEM5021.53Ag NPs on Carbon ClothNiFe to BHMFHMF Hydrogenation to BHMFHMF FDCA (pH 13)AEM5021.53Ag NPs on Carbon ClothNiFe Hydrogenation to BHMFHMF FDCA (pH 13)BPM5022.23Rho.s/PVC Carbon PaperPVC on Carbon PaperNeat Toluene Hydrogenation OxidationHydrogen Oxidation Oxidation OxidationCEMca. 100%200-0.02*4PUC on Carbon PaperNeat Toluene HydrogenationHydrogen Oxidation Oxidation (0.1 M H2SO4)CEMca. 85%200-0.04*4Pd on Carbon ClothPt-mesh anode1-Decene Hydrogenation (0.1 M H2SO4)CEM48282.235Pt on ClothPt-mesh anode1-Decene HydrogenationWater Oxidation (0.1 M H2SO4)CEM101003.615Bi PlatePt Plate hydrogenationCisc,cis.muconic acid hydrogenationWater Oxidation (DH react or412005.76Fe:NicSs on H23IrO2 on Ti- D15 mm2-Methyl-3- butyn-2-01 Oxidation Oxidation (ZM Mater Ti- butyn-2-01 Oxidation (ZM CMAEM A	` •	· •	Reaction		rane	/ %			
On Carbon ClothNife to BHMFHydrogenation FDCA (pH 13)Ochadon to ClothOchadon to FDCA (pH 13)Sol Cloth21.51.5Ag NPs on Carbon ClothNiFe to BHMFHMF Hydrogenation to BHMFHMF FDCA (pH 13)AEM PCA (pH 13)5021.53Ag NPs on Carbon ClothNiFe to BHMFHMF Hydrogenation to BHMFHMF FDCA (pH 13)BPM PCA (pH 13)5022.23Rho.3s/Pt/CPt/C on PaperNeat Toluene Hydrogenation HydrogenationHydrogen OxidationCEM Nitation200 S5%-0.02*4Pt/C on Carbon PaperNeat Toluene Hydrogenation HydrogenationHydrogen OxidationCEM S5%200 200-0.02*4Pt/C on Carbon Carbon Carbon Carbon ClothNeat Toluene HydrogenationHydrogen Oxidation (0.1 M H2SO4)CEM S5%200 200-0.04*4Pd on Carbon ClothPt-mesh anode1-Decene Hydrogenation (0.1 M H2SO4)CEM Vater Oxidation (0.1 M H2SO4)100 2003.615Pt on ClothPt Plate acid node1-Decene (Oxidation (0.1 M H2SO4)Undi vided react or100 2003.615Fe:NioSs on H23IrO2 on D.15 mm2-Methyl-3- hydrogenationWater Oxidation (2M KOH)4449802.2This workFe:NioSs on H23IrO2 on D.15 mm2-Methyl-3- hydrogenationWater <b< td=""><td>Ag NPs</td><td>,</td><td>HMF</td><td>HMF</td><td></td><td></td><td></td><td></td><td></td></b<>	Ag NPs	,	HMF	HMF					
Ag NPs on Carbon ClothNiFe to BHMFHMF Hydrogenation to BHMFHMF FDCA (pH 13)AEM AEM50 5021.53Ag NPs on Carbon ClothNiFe to BHMFHMF Hydrogenation to BHMFHMF FDCA (pH 13)BPM S05022.23Rho.3s/Pt/CPt/C on PaperNeat Toluene Hydrogenation PaperNeat Toluene Hydrogenation OxidationHydrogen OxidationCEM S%200-0.02*4Pt/C on Carbon PaperNeat Toluene HydrogenationHydrogen OxidationCEM S%200-0.02*4Pt/C on Carbon PaperNeat Toluene HydrogenationHydrogen OxidationCEM S%200-0.02*4Pt Con Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Carbon Paper1-Decene HydrogenationWater Oxidation (0.1 M H2SO4)CEM Vater Oxidation (0.1 M H2SO4)1003.615Pt on Carbon ClothPt-mesh anode1-Decene HydrogenationWater Oxidation (0.1 M H2SO4)CEM Vater or1003.615Fe:NicSk on H23IrO2 on D.15 mm Dityr-2-012-Methyl-3- Butyr-2-01Water Oxidation (2M KOH)49802.9This workFe:NicSk on H23IrO2 on D.15 mm2-Methyl-3- Butyr-2-01Water Oxidation (2M KOH)AEM AEM49802.2This work	on Carbon	NiFe	Hydrogenation	Oxidation to	CEM	50	2	1.5	3
Ag NPs on Carbon ClothNiFeHMF Hydrogenation to BHMFHMF FDCA (pH 13)AEM Ag NP FDCA (pH 13)5021.53Ag NPs on Carbon ClothNiFeHMF Hydrogenation to BHMFHMF FDCA (pH 13)BPM DXidation to BPM5022.23Ag NPs on Carbon ClothNiFeHMF Hydrogenation to BHMFHMF FDCA (pH 13)BPM DXidation to BPM5022.23Rho.3s/Pt/CPt/C on PaperNeat Toluene Hydrogenation PaperHydrogen OxidationCEM OXidationCeM R5%200-0.02*4Pt/C on Carbon PaperNeat Toluene HydrogenationHydrogen OxidationCEM R5%200-0.02*4Pt/C on Carbon Carbon ClothPt-mesh anode1-Decene HydrogenationWater Oxidation (0.1 M H2SO4)CEM Vater Oxidation (0.1 M H2SO4)CEM R5%48282.235Pt on ClothPt-mesh anode1-Decene HydrogenationWater Oxidation (0.1 M H2SO4)CEM Vater or10003.615Fe ₃ NicSs on H23IrO2 on O.15 mm Nidrogenation2-Methyl-3- MydrogenationWater Oxidation (2M KOH)Undi vided reat or49802.2This workFe ₃ NicSs on H23IrO2 on D.15 mm2-Methyl-3- MydrogenationWater KOHAEM AEM49802.2This work	Cloth			FDCA (pH 13)					
Off Carbon ClothNife to BHMFHMF FDCA (pH 13)ALM FDCA (pH 13)3021.51.5Ag NPs on Carbon PaperHMF HydrogenationHMF OXidation to to BHMFHMF FDCA (pH 13)BPM S05022.2.23Pt/C on Carbon PaperNeat Toluene HydrogenationHydrogen OxidationCEM R50200-0.02*4Pt/C on Carbon PaperNeat Toluene HydrogenationHydrogen OxidationCEM R50200-0.02*4Pt/C on Carbon PaperNeat Toluene HydrogenationHydrogen OxidationCEM R50200-0.02*4Pt/C on Carbon PaperNeat Toluene HydrogenationMater Oxidation (0.1 M H2SO4)CEM R50200-0.02*4Pd on Carbon Carbon ClothPt-mesh anode1-Decene Hydrogenation (0.1 M H2SO4)CEM Vater Oxidation (0.1 M H2SO4)48282.235FeaNiaSs on H23IrO2 on 0.15 mm Nidrogenation2-Methyl-3- hydrogenationWater Oxidation (2M Oxidation (2M NH2SO4)Undi vided react or49802.9This workFeaNiaSs on H23IrO2 on 0.15 mm2-Methyl-3- hydrogenationWater Oxidation (2M OXidation (2M KOH)AEM AEM49802.9This workFeaNiaSs on H23IrO2 on 0.15 mm2-Methyl-3- hydrogenationWater Oxidation (2M KOH)AEM AEM49802.9This<	Ag NPs		HMF						
Ag NPs on Carbon ClothHMF Hydrogenation to BHMFHMF DCA (pH 13)HMF DCA (pH 13)HMF BPM5022.23 $Rh_{0.38}/Pt/C$ $NiFe$ Carbon PaperNeat Toluene HydrogenationHydrogen OxidationCEM $ca.$ 100% 200 $-0.02*$ 4 Pt/C on Carbon PaperNeat Toluene HydrogenationHydrogen OxidationCEM $ca.$ 100% 200 $-0.02*$ 4 Pt/C on Carbon PaperNeat Toluene HydrogenationHydrogen OxidationCEM $ca.$ 85% 200 $-0.04*$ 4 Pd on Carbon PaperNeat Toluene HydrogenationHydrogen OxidationCEM $ca.$ 85% 200 $-0.04*$ 4 Pd on Carbon ClothNeat Toluene HydrogenationHydrogen OxidationCEM $ca.$ 85% 200 $-0.04*$ 4 Pd on Carbon ClothPt-mesh anode1-Decene HydrogenationWater Oxidation $(0.1 M H_2SO4)$ CEM 48 28 2.23 5 Fe_3NicS_8 on H23 IC_2 on $0.15 mm2-Methyl-3-HydrogenationWaterOxidation (2MKOH)AEM49802.9ThisworkFe_3NicS_8on H23IC_2 on1.52-Methyl-3-HydrogenationWaterOxidation (2MKOH)AEM49802.9ThisworkFe_3NicS_8on H23IC_2 on1.52-Methyl-3-HydrogenationOxidation (2M)Oxidation (2M)AEM$	on Carbon	NiFe	Hydrogenation	Oxidation to	AEM	50	2	1.5	3
Ag NPs on Carbon ClothNiFeHMF Hydrogenation to BHMFHMF FDCA (pH 13)BPM S05022.23 $Rh_{0.38}/Pt/C$ $NiFe$ Neat Toluene Hydrogenation PaperNeat Toluene HydrogenationHydrogen OxidationCEM $ca.$ 100% 200 $-0.02*$ 4 Pt/C on Carbon PaperNeat Toluene HydrogenationHydrogen OxidationCEM $ca.$ 100% 200 $-0.02*$ 4 Pt/C on Carbon PaperNeat Toluene HydrogenationHydrogen OxidationCEM $ca.$ 85% 200 $-0.04*$ 4 Pt/C on Carbon PaperNeat Toluene HydrogenationHydrogen OxidationCEM $ca.$ 85% 200 $-0.04*$ 4 Pt on Carbon Cloth Pt -mesh anode 1 -Decene HydrogenationWater Oxidation $(0.1 M H_2SO_4)$ CEM 488 28 2.23 5 Pt on Cloth Pt -mesh anode 1 -Decene HydrogenationWater Oxidation $(0.1 M H_2SO_4)$ 100 3.611 5^{-1} Fe_3NicS_8 on H23 IC_2 on $0.15 mm2-Methyl-3-HydrogenationWaterOxidation (2MKOH)AEM49802.9ThisworkFe_3NicS_8on H23IC_2 on1.52-Methyl-3-HydrogenationWaterOxidation (2MKOH)AEM49802.9ThisworkFe_3NicS_8on H23IC_2 on1.52-Methyl-3-HydrogenationNaterOxidation (2M$	Cloth		to BHMF	FDCA (pH 13)					
On Carbon PaperPt/C on PaperNeat Toluene HydrogenationHydrogen OxidationCEM CEMca. 100%200 200-0.02*4Pt/C on Carbon PaperNeat Toluene HydrogenationHydrogen OxidationCEM CEMca. 100%200 200-0.02*4Pt/C on Carbon PaperNeat Toluene HydrogenationHydrogen OxidationCEM CEMca. 85%200 200-0.02*4Pt/C on Carbon PaperNeat Toluene HydrogenationHydrogen OxidationCEM CEMca. 85%200 200-0.04*4Pd on Carbon ClothPt-mesh anode1-Decene HydrogenationWater Oxidation (0.1 M H2SO4)CEM CEM488 28282.235Pt on ClothPt-mesh anode1-Decene HydrogenationWater Oxidation (0.1 M H2SO4)CEM Oxidation (0.1 M H2SO4)100 react act3.615Bi PlatePt Plate $\frac{cis, cis.muconic}{acid}$ NydrogenationWater Oxidation (PH react orUndi vided react or411 act act act200 act act butyn-2-01So oxidation (2M AEMAEM AP49802.9This workFe3Ni6S8 on H23Ti- Ditym2-Methyl-3- butyn-2-01Oxidation (2M Oxidation (2M KOH)AEM AP49802.9This workFe3Ni6S8 on H23Ti- butyn-2-012-Methyl-3- Oxidation (2M NdterAEM AP49802.9 <td>Ag NPs</td> <td></td> <td>HMF</td> <td>HMF</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Ag NPs		HMF	HMF					
Pt/C on Rho.3s/Pt/CNeat Toluene HydrogenationHydrogen OxidationCEM $ca.100\%$ 200 $-0.02*$ 4 Pt/C on Carbon PaperPt/C on Carbon PaperNeat Toluene HydrogenationHydrogen OxidationCEM $ca.100\%$ 200 $-0.02*$ 4 Pt/C on Carbon PaperNeat Toluene HydrogenationHydrogen OxidationCEM $ca.85\%$ 200 $-0.04*$ 4 Pd on Carbon Carbon Carbon ClothPt-mesh Hydrogenation1-Decene HydrogenationWater Oxidation $(0.1 M H_2SO_4)$ CEM 48 28 2.23 5 Pt on Carbon ClothPt-mesh anode1-Decene HydrogenationWater Oxidation $(0.1 M H_2SO_4)$ CEM 41 200 3.61 5 Pt on Carbon ClothPt-mesh Hydrogenation1-Decene HydrogenationWater Oxidation $(0.1 M H_2SO_4)$ CEM 100 3.61 5 Fe ₃ Ni ₆ S ₈ on H23IrO2 on $0.15 mm$ $2-Methyl-3-$ hydrogenationWater Oxidation (2M KOH) AEM 49 80 2.9 $This$ workFe ₃ Ni ₆ S ₈ on H23IrO2 on $0.15 mm$ $2-Methyl-3-$ hydrogenationWater Oxidation (2M KOH) AEM 49 80 2.9 $This$ work	on Carbon	NiFe	Hydrogenation	Oxidation to	BPM	50	2	2.2	3
Rh0.38/Pt/C PaperCarbon PaperNeat Toluene HydrogenationHydrogen OxidationCEMCa. 100%200-0.02*4Pt/C on Carbon PaperPt/C on Carbon PaperNeat Toluene HydrogenationHydrogen OxidationCEMca. 85%200-0.02*4Pd on Carbon Carbon anode1-Decene HydrogenationWater (0.1 M H2SO4)CEM4882882.2335Pt on Carbon ClothPt-mesh anode1-Decene HydrogenationWater (0.1 M H2SO4)CEM4882882.2335Pt on Carbon ClothPt-mesh anode1-Decene HydrogenationWater (0.1 M H2SO4)CEM1003.615Pt on Carbon ClothPt-mesh anode1-Decene HydrogenationWater (0.1 M H2SO4)CEM1003.615Pt on Carbon ClothPt Plate1-Decene acidWater (0.1 M H2SO4)Undi vided react or4120003.615Fe ₃ NieS8 on H23IrO2 on (1.5 mm (0.15 mm2-Methyl-3-Water (NdigenationMater (Ndiation (2M (Ndiation (2M (Ndiation (2M (1.5 mm (0.15 mm2-Methyl-3-Water (Ndiation (2M (Ndiation (2M (1.5 mm (0.15 mm2-Methyl-3-Water (Ndiation (2M (Ndiation (2M (Ndiation (2M (Ndiation (2M (1.5 mm2-Methyl-3-Mater (Ndiation (2M (Ndiation (2M (Ndiation (2M (Ndiation (2M (Ndiation (2M (Ndiation (2M (Ndiation (2M (AEM (2.5 mu (Ndiation (2M (Ndiation (2M (Ndiation	Cloth		to BHMF	FDCA (pH 13)					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Pt/C on	Nut T 1						
Public Public Carbon PaperPublic Public Carbon PaperNeat Toluene HydrogenationHydrogen OxidationCEMca. 85% 200-0.04*4Pd on Carbon Carbon anodePt-mesh Hydrogenation1-Decene HydrogenationWater Oxidation $(0.1 M H_2SO_4)$ CEM48282.235Pt on Carbon ClothPt-mesh anode1-Decene HydrogenationWater Oxidation $(0.1 M H_2SO_4)$ CEM101003.615Pt on Carbon ClothPt-mesh anode1-Decene HydrogenationWater Oxidation $(0.1 M H_2SO_4)$ CEM101003.615Fe 3Ni6Sk on H23IrO2 on 0.15 mm2-Methyl-3- hydrogenationWater Oxidation (2M KOH)Mater AEM49802.9This workFe 3Ni6Sk on H23IrO2 on 0.15 mm2-Methyl-3- hydrogenationWater KOH)AEM49802.9This workFe 3Ni6Sk on H23IrO2 on 1.15 mm2-Methyl-3- hydrogenationWater KOH)AEM49802.9This work	Rh _{0.38} /Pt/C	Carbon			CEM		200	-0.02*	4
$ \begin{array}{c ccc} Carbon \\ Paper \\ P$		Paper	Hydrogenation	Oxidation		100%			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pt/C on	Pt/C on	Need Tolary	II de service					
Paper <th< td=""><td>Carbon</td><td>Carbon</td><td></td><td></td><td>CEM</td><td></td><td>200</td><td>-0.04*</td><td>4</td></th<>	Carbon	Carbon			CEM		200	-0.04*	4
$ \begin{array}{c ccc} Carbon \\ Cloth \\ anode \\ Cloth \\ anode \\ Pt on \\ Carbon \\ anode \\ Pt on \\ Carbon \\ anode \\ Pt mesh \\ anode \\ Pt mesh \\ anode \\ Pt on \\ Pt mesh \\ anode \\ Pt on \\ anode \\ Pt on \\ P$	Paper	Paper	Hydrogenation	Oxidation		85%			
$ \begin{array}{c ccc} Carbon \\ Cloth \\ \hline \mbox{Normalization} \\ Cloth \\ \hline \mbox{Normalization} \\ Cloth \\ \hline \mbox{Normalization} \\ \hline \mbox{Normalization} \\ Cloth \\ \hline \mbox{Normalization} \\ \hline \mbox{Normalization} \\ Cloth \\ \hline \mbox{Normalization} \\ anode \\ \hline \mbox{Normalization} \\ \hline \mbox{Normalization} \\ \hline \mbox{Normalization} \\ Cloth \\ \hline \mbox{Normalization} \\ \hline \mbox{Normalization} \\ Cloth \\ \hline \mbox{Normalization} \\ \hline Nor$	Pd on	Dé au cali	1 Deceme	Water					
ClothIIU(0.1 M H2SO4)III </td <td>Carbon</td> <td></td> <td></td> <td>Oxidation</td> <td>CEM</td> <td>48</td> <td>28</td> <td>2.23</td> <td>5</td>	Carbon			Oxidation	CEM	48	28	2.23	5
$ \begin{array}{c} \mbox{Carbon}\\ \mbox{Cloth} \end{array} & \begin{array}{c} \mbox{Pt-mesh}\\ \mbox{anode} \end{array} & \begin{array}{c} \mbox{I-Decene}\\ \mbox{Hydrogenation} \end{array} & \begin{array}{c} \mbox{Oxidation}\\ \mbox{(0.1 M H2SO4)} \end{array} & \begin{array}{c} \mbox{CEM}\\ \mbox{I0} \end{array} & \begin{array}{c} \mbox{I0}\\ \mbox{I0}\end{array} & \begin{array}{c} \mbox{I0}\end{array} & \begin{array}{c} \mbox{I0}\\ \mbox{I0}\end{array} & \begin{array}{c} \mbo$	Cloth	anode	Hydrogenation	(0.1 M H ₂ SO ₄)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pt on	Dé au cali	1 Deceme	Water					
ClothII <td>Carbon</td> <td></td> <td></td> <td>Oxidation</td> <td>CEM</td> <td>10</td> <td>100</td> <td>3.61</td> <td>5</td>	Carbon			Oxidation	CEM	10	100	3.61	5
Bi PlatePt Plate $cis, cis. muconicacidhydrogenationWaterOxidation (pHreact7)videdreactor412005.76Fe3Ni6S8on H23IrO2 on0.15 mm2-Methyl-3-butyn-2-olWaterOxidation (2MKOH)AEM49802.9ThisworkFe3Ni6S8on H23IrO2 on0.15 mm2-Methyl-3-butyn-2-olWaterOxidation (2MKOH)AEM49802.9ThisworkFe3Ni6S8on H23IrO2 on0.15 mm2-Methyl-3-butyn-2-olWaterOxidation (2MOxidation (2MKOH)AEM49802.2ThisworkFe3Ni6S8on H23IrO2 on0.15 mm2-Methyl-3-butyn-2-olWaterOxidation (2MKOH)AEM49802.2Thiswork$	Cloth	anode	Hydrogenation	(0.1 M H ₂ SO ₄)					
Bi PlatePt Plateacid hydrogenationOxidation (pH reactvided react41 react200 react5.7 feat6Fe3Ni6S8 on H23IrO2 on 0.15 mm2-Methyl-3- butyn-2-olWater Oxidation (2M KOH)AEM M49800 AEM2.9This workFe3Ni6S8 on H23IrO2 on 0.15 mm2-Methyl-3- butyn-2-olWater Oxidation (2M KOH)AEM AEM49800 AEM2.9This workFe3Ni6S8 on H23IrO2 on 0.15 mm2-Methyl-3- butyn-2-olOxidation (2M Oxidation (2M KOH)AEM AEM49800 AEM2.2This workFe3Ni6S8 on H23IrO2 on Ti-2-Methyl-3- butyn-2-olWater Oxidation (2M KOH)AEM AEM49802.9This work			aig aig mussenie	Weter	Undi				
Bit HateIf thateactualOxidation (pf) reactreact or41200 3.7 3.7 H_{1} H_{2} H_{1} H_{2} H_{1} H_{2} 3.7 H_{1} 100 3.7 100	Di Dlata	D4 D1-4-			vided	41	200	6.7	6
Image: Normal systemImage: Normal system <th< td=""><td>BI Plate</td><td>Pi Plate</td><td></td><td></td><td>react</td><td>41</td><td>200</td><td>5.7</td><td></td></th<>	BI Plate	Pi Plate			react	41	200	5.7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			nydrogenation	/)	or				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ea.N. C	IrO ₂ on	2-Methyl-3-	Water					Th:-
0.15 mmhydrogenationKOH)Image: Constraint of the second s		Ti-	butyn-2-ol	Oxidation (2M	AEM	49	80	2.9	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	on H23	0.15 mm	hydrogenation	KOH)					work
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E-NE C	IrO ₂ on	2-Methyl-3-	Water					The
0.15 mmhydrogenationKOH)Image: Constraint of the second s		Ti-	butyn-2-ol	Oxidation (2M	AEM	49	80	2.2	
Fe ₃ N ₁₆ S ₈ on H23Ti-butyn-2-olOxidation (2MAEM49802.9This work	on H23	0.15 mm	hydrogenation	KOH)					
on H23 Ti- butyn-2-ol Oxidation (2M AEM 49 80 2.9 work)	Ea N. S.	IrO ₂ on	2-Methyl-3-	Water					
WORK WORK		Ti-	butyn-2-ol	Oxidation (2M	AEM	49	80	2.9	
0.13 mm nydrogenation KOR)	on H23	0.15 mm	hydrogenation	KOH)					work

References

- D. Tetzlaff, K. Pellumbi, D. M. Baier, L. Hoof, H. Shastry Barkur, M. Smialkowski, H. M. A. Amin, S. Grätz, D. Siegmund, L. Borchardt and U.-P. Apfel, *Chem. Sci.*, 2020, 11, 12835.
- 2 K. Pellumbi, L. Wickert, J. T. Kleinhaus, J. Wolf, A. Leonard, D. Tetzlaff, R. Goy, J. A. Medlock, K. Junge Puring, R. Cao, D. Siegmund and U.-P. Apfel, *Chem. Sci.*, 2022, 13, 12461.
- 3 H. Liu, T.-H. Lee, Y. Chen, E. W. Cochran and W. Li, *ChemElectroChem*, 2021, 8, 2817.
- 4 T. Imada, M. Chiku, E. Higuchi and H. Inoue, ACS Catal., 2020, 10, 13718.
- 5 J. Benziger and J. Nehlsen, Ind. Eng. Chem. Res., 2010, 49, 11052.
- M. N. Dell'Anna, M. Laureano, H. Bateni, J. E. Matthiesen, L. Zaza, M. P. Zembrzuski, T. J. Paskach and J.-P. Tessonnier, *Green Chem.*, 2021, 23, 6456.